Practical class - neuromodulation and imaging:

EEG source analysis

Pieter van Mierlo
Willeke Staljanssens
Gregor Strobbe
Introduction
EEG source analysis

Electrodes

Inverse problem?
What are we measuring?

• ~100,000 simultaneously active neurons are needed to generate a measurable EEG signal
• Pyramidal cells are the main direct neuronal sources of EEG signals
• Synaptic currents but not action potentials generate EEG signals
How do we model these generating sources?

Current dipole:
- orientation
- intensity
- location
Forward model characterization

Head model

- Geometrical properties of the head
- Electromagnetic properties of the head
- Position of the electrodes

Source space

- The number of dipoles
- Location of the dipoles
- (clustering of dipoles)
Forward model

\[Y = KJ + E_1 \]
Solution?

Example: minimize $||Y - KJ||^2$ in function of the parameters of the forward model
Inverse methods

Using focal source models:
• Single dipole fitting
• Multiple dipole fitting
 → Good performance when source is expected to be focal, e.g. epilepsy spikes

Using distributed source models:
• Dipole distributions: LORETA, MUSIC, MSP, ...
 → Good performance when source is expected to be distributed or patchy
Hands-on
Goal?

Get familiar with EEG signals – EEG source analysis

Introduction to the processing of these signals:
• Get relevant information from signals
• Interpretation of the results
Part 1: Influence of the head model

3-layered versus 4-layered head models:
Investigate the effect of modeling extra layers in the brain

Do localization of an epileptic spike

(optional) Investigate the effect of high versus low skull conductivity
Part 2: Influence of the source space and inverse technique

Single dipole sources
Multiple dipole sources
Distributed dipole sources

Reconstruction of realistic ERP data
Practicum

Class notes (summarized theory - exercises)
Apply pre-written matlab programs:
 – Located on C:\temp\Code_data
Interpretation of the figures:
 – what did you plot?
Minimal programming
Sometimes demands to be creative
What do we expect from you?

Report:

– Answer to the questions
– Illustrate with figures
 • Don’t forget labels!
– Be short and concise (NO matlab code!)
– One report for each 2 persons in pdf
– Use dropbox (on minerva) to upload the report
– Deadline: April 13th at 23:59!
Influence of the head model
3-layered versus 4-layered head models
3-layered versus 4-layered head models

5: scalp 0.33 S/m
4: skull 0.022 S/m
3: brain 0.33 S/m

Left lateral ventricle
3-layered versus 4-layered head models

Electrode positions
3-layered versus 4-layered head models

Dipole locations

Spacing: 3 voxels = 3mm
3-layered versus 4-layered head models

Unit dipole z-direction at location 3000: V=L(:,9000)
3-layered versus 4-layered head models

Unit dipole z-direction at location 3000: \(V = L(:,9000) \)
3-layered versus 4-layered head models

Unit dipole z-direction at location 3000: \(V=L(:,9000) \)

4-layered – 3-layered
3-layered versus 4-layered head models

Unit dipole $[1 \ 1 \ -0.5]$ at 49233 close to skull

Unit dipole $[1 \ 1 \ -0.5]$ at 28533 close to CSF
3-layered versus 4-layered head models

Unit dipole [1 1 -0.5] at 49233 close to skull

Unit dipole [1 1 -0.5] at 28533 close to right ventricle

4-layered – 3-layered

4-layered – 3-layered

modeling CSF for dipole close to center is more spread out
3-layered versus 4-layered head models

<table>
<thead>
<tr>
<th>dipole close to O2</th>
<th>Residual energy</th>
<th>Localization error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-layered</td>
<td>0.0468</td>
<td>3.7237 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dipole close to center</th>
<th>Residual energy</th>
<th>Localization error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-layered</td>
<td>0.0268</td>
<td>3.1172 mm</td>
</tr>
</tbody>
</table>

For the dipole close to O2 the effect of modeling CSF is directly measured by the electrodes, the localization error is larger compared to the dipole in the center for which the effect of modeling CSF is more spread out.
3-layered versus 4-layered head models

Case study: epilepsy – head model

5: scalp 0.33 S/m
4: skull 0.022 S/m
3: CSF 1.79 S/m
2: white matter 0.33 S/m
1: gray matter 0.33 S/m
3-layered versus 4-layered head models

Case study: epilepsy – spike 7
3-layered versus 4-layered head models

Case study: epilepsy – average spike

Peak at sample 129
3-layered versus 4-layered head models

Case study: epilepsy – average spike scalp map at peak

From the scalp map it is hard to see where the spike originated
3-layered versus 4-layered head models

Case study: epilepsy – dipole localization at 3 time points of spike

Beginning

50% rise-time

Peak

Goodness of fit: RRE
3-layered versus 4-layered head models

Case study: epilepsy – dipole localization at 3 time points of spike

- Beginning
- 50% rise-time
- Peak

Goodness of fit: RRE
3-layered versus 4-layered head models

Case study: epilepsy – dipole localization

<table>
<thead>
<tr>
<th>Time point</th>
<th>Sample</th>
<th>Residual energy</th>
<th>Distance to resected zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>120</td>
<td>0.8271</td>
<td>76.01 mm</td>
</tr>
<tr>
<td>Peak</td>
<td>129</td>
<td>0.4182</td>
<td>8.29 mm</td>
</tr>
<tr>
<td>50% rise-time</td>
<td>125</td>
<td>0.5733</td>
<td>16.45 mm</td>
</tr>
</tbody>
</table>

Best data fit
music.m function

Change line 21 to

```matlab
r = max(find(S >= S(1)/100));
```
Influence of the source space and inverse technique
Single, multiple and distributed dipole sources

Simulated EEG 1 oscillating dipole
Single, multiple and distributed dipole sources

Simulated EEG 3 oscillating dipoles

Time (s)
Single, multiple and distributed dipole sources

- Only 7002 possible dipole locations vs. 53178: only on cortical surface
- Matrix QG contains information on interconnections between dipoles
- Leadfields have as many columns as there are dipoles. The orientation of the dipoles is already incorporated (orthogonal to the cortical surface)
Single, multiple and distributed dipole sources

Dipole locations

Slice XY

Slice XZ

Slice ZY

[X: 70, Y: 110, Z: 97, Time: 1/1], value: 108
Single, multiple and distributed dipole sources

Cortical surface
Single, multiple and distributed dipole sources

Simulated patch, \(\text{ind} = [10 \ 3500 \ 7000] \), \(\text{fo} = [15 \ 17 \ 33] \), SNR = 10 dB
Single, multiple and distributed dipole sources

Single dipole fit

Goodness of fit: RRE
Single, multiple and distributed dipole sources

Single dipole fit – distance to center of patches:
 patch 1 (dip 10 [27 89 79]): 134.09 mm
 patch 2 (dip 3500 [92 132 73]): 84.27 mm
 patch 3 (dip 7000 [159 90 77]): 6.64 mm

→ One of the 3 patches reconstructed
Single, multiple and distributed dipole sources

Multiple dipole fit: MUSIC

14 3782 7000
Single, multiple and distributed dipole sources

Multiple dipole fit: MUSIC

<table>
<thead>
<tr>
<th></th>
<th>Reconstructed dipole 1</th>
<th>Reconstructed dipole 2</th>
<th>Reconstructed dipole 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch 1</td>
<td>10.34 mm</td>
<td>79.01 mm</td>
<td>132.02 mm</td>
</tr>
<tr>
<td>Patch 2</td>
<td>80.06 mm</td>
<td>20.02 mm</td>
<td>79.18 mm</td>
</tr>
<tr>
<td>Patch 3</td>
<td>131.3 mm</td>
<td>69.24 mm</td>
<td>0.0 mm</td>
</tr>
</tbody>
</table>
Reconstruction of realistic ERP data
Reconstruction of realistic ERP data

Single dipole fit

Fitted dipole not in fusiform face area

Goodness of fit: FDE
Reconstruction of realistic ERP data

Multiple dipole fit - MUSIC

Fitted dipoles near left FFA

Goodness of fit: RRE
Reconstruction of realistic ERP data

Distributed source model

Activation in left and right FFA, more expressed in right hemisphere