Pattern Recognition in EEG

Pieter-Jan Kindermans,

UGent,

Department of Electronics and Information Systems (ELIS)

Who is familiar with machine learning?

Who is familiar with MATLAB?

Who knows how to program?

We are

Thibault Verhoeven, Pieter-Jan Kindermans

- Faculty of engineering and architecture
- Department of Electronics and Information Systems (ELIS)
- Reservoir Lab (a Machine learning group)
- PhD students
- Work on/related to Brain-Computer Interfaces

Outline

- Event-Related Potential classification (the task)

- Machine learning methods (the basic tools)

- Unsupervised classification in BCI (advanced tools)

- The hands on session (the work)

- Your own data?

Event-Related Potential classification (the task)

focus on ERPs in Brain-Computer Interfaces

Application: Brain-Computer Interfaces

brain-signals

decoder

application

Event-Related Potentials (Oddball paradigm)

ERP based BCI

Attended stimulus?

ERP variations

All these variations exhibit the same stimulus/iteration structure

- Visual speller
- Auditory (e.g. Amuse, PASS2D)
- Tactile

- ..

Example: auditory ERPs

Many differences between subjects

Unfortunately, the raw data looks like this

ERP Speller: The default approach

- 1. Record training data (quite boring)
- 2. Machine learning magic (supervised)
- 3. Use the BCI

Questions?

We will build a decoder to discriminate between target and non-target ERP responses

It is already implemented.

If you get bored, you can extend the implementation such that it predicts the symbols as well.

Machine learning methods (the basic tools)

- Do not optimise the model on the data used for evaluation

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible

- Use a proper cost function

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible

- Use a proper cost function

- Do not directly interpret the classifier weights

Pictures from Pattern Recognition and Machine Learning (C. Bishop)

Pictures from Pattern Recognition and Machine Learning (C. Bishop)

$$p(\boldsymbol{x}|C_{1}) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{1})^{T} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{1}))$$

$$p(\boldsymbol{x}|C_{2}) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{2})^{T} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{2}))$$

$$p(C_{1}) = \pi_{C_{1}}, \quad 0 \leq \pi_{C_{1}} \leq 1$$

$$p(C_{2}) = 1 - \pi_{C_{1}}$$

$$wx + w_0 > 0$$

 $w = \Sigma^{-1}(\mu_1 - \mu_2)$
 $w_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + \log \frac{p(C_1)}{p(C_2)}$

$$wx + w_0 > 0$$

$$w = \Sigma^{-1}(\mu_1 - \mu_2)$$

$$w_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + \log \frac{p(C_1)}{p(C_2)}$$

Linear Discriminant Analysis

$$wx + w_0 > 0$$

$$w = \Sigma^{-1}(\mu_1 - \mu_2)$$

$$w_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + \log \frac{p(C_1)}{p(C_2)}$$

Overfitting and regularisation

Regularisation for LDA

Estimating covariance matrices is difficult (especially for high dimensions) Shrinkage regularisation

$$\hat{\Sigma} = \Sigma + \lambda I$$

Effect: the weight vector becomes equal to the difference between the class means:

$$\boldsymbol{w} = \hat{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

Training and testing

data

Training and testing

Crossvalidation

Nested crossvalidation

For all the inner folds

data			
train	val	idation	
subfold 1			
subfold 2			
subfold 3			
subfold 4			

Error measures

Computing the accuracy is simple, just count how many examples you have classified correctly!

Error measures

Computing the accuracy is simple, just count how many examples you have classified correctly!

Yes, but ...

What if the data is such that 99% of the samples are belonging to the non-target class. If I constantly predict non-target, this will be a good model.

Images: wikipedia

TP	FP
FN	TN
1	1

Error measures

True positive rate (or sensitivity, recall):

$$TPR = \frac{TP}{P}$$

True negative rate (or specificity)

$$TNR = \frac{TN}{N}$$

False positive rate

$$FPR = \frac{FP}{N}$$

Error measures: balanced accuracy

True positive rate (or sensitivity, recall):

$$TPR = \frac{TP}{P}$$

True negative rate (or specificity)

$$TNR = \frac{TN}{N}$$

Possible to combine TPR and TNR in a balanced accuracy by averaging.

Error measures: area under curve

Questions?

The hands on session (the work)

Data

- Visual ERP data (6x6) matrix speller

- 1:5 ratio of target to non-targets

- 15 iterations

- 12 stimuli per iteration

- 64 channels at 240 Hz

Find the target samples!

Feedback