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Who is familiar with machine learning”



Who is familiar with MATLAB?




Who knows how to program?



We are

Thibault Verhoeven, Pieter-dan Kindermans

- Faculty of engineering and architecture

- Department of Electronics and Information Systems (ELIS)

- Reservoir Lab (a Machine learning group)

- PhD students

- Work on/related to Brain-Computer Interfaces



To illustrate basic machine learning principles



Outline

- Event-Related Potential classification (the task)

- Machine learning methods (the basic tools)

- Unsupervised classification in BCl (advanced tools)

- The hands on session (the work)

- Your own data?
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Potential classification (the task)

focus on ERPs in Brain-Computer Interfaces



Application: Brain-Computer Interfaces

source: kuka

brain-signals decoder
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Related Potentials (Oddball paradigm)
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General principle behind
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General principle behind
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P based BCI
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General principle behind
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General principle behind ERP based BCI
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General principle behind ERP based BCI
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General principle behind ERP based BCI
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—RP variations

All these variations exhibit the same stimulus/iteration structure

- Visual speller

- Auditory (e.g. Amuse, PASS2D)

- Tactile
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—xample: auditory ERPs

A - supervised blocks
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Many differences

between subjects
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Unfortunately, the
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raw data looks like this
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RP Speller: The default approach

1. Record training data (quite boring)

2. Machine learning magic (supervised)

3. Use the BCI
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Questions?
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We will build a decoder to discriminate between
target and non-target ERP responses

It is already implemented.
If you get bored, you can extend the implementation such that it predicts the symbols as well.
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Machine learning methods (the basic tools)
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Machine learning rules

- Do not optimise the model on the data used for evaluation
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Machine learning rules

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible
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Machine learning rules

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible

- Use a proper cost function

30



Machine learning rules

- Do not optimise the model on the data used for evaluation

- Keep the model as simple as possible

- Use a proper cost function

- Do not directly interpret the classifier weights
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Linear Discriminant Analysis

Pictures from Pattern Recognition and Machine Learning (C. Bishop)
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Linear

Discriminant Analysis

Pictures from Pattern Recognition and Machine Learning (C. Bishop)
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Linear Discriminant Analysis
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Linear

Discriminant Analysis
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Linear Discriminant Analysis
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Linear
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Overfitting and regularisation
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Regularisation for LDA

Estimating covariance matrices is difficult (especially for high dimensions)
Shrinkage regularisation

A

X=X+ A

Effect: the weight vector becomes equal to the difference between the class
means:



Training and testing

data
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Training and testing
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Crossvalidation
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Nested crossvalidation
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The importance of multivariate interactions
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The importance of multivariate interactions
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The importance of multivariate interactions
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The importance of multivariate interactions

A: pattern

subject A

subject B
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The importance of multivariate interactions

A: pattern B: example data points
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The importance of multivariate interactions

A: pattern B: example data points
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The importance of multivariate interactions

A: pattern B: example data points D: histogram of
1d projection
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—rrOr measures

Computing the accuracy is simple, just count how many examples you have
classified correctly!
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—rrOr measures

Computing the accuracy is simple, just count how many examples you have
classified correctly!

Yes, but ...

What if the data is such that 99% of the samples are belonging to the non-
target class. If | constantly predict non-target, this will be a good model.




Images: wikipedia
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—rrOr measures

True positive rate (or sensitivity, recall):

TP
I'PR=——
P
True negative rate (or specificity)
IT'N
I'NR=——
N
False positive rate
FP

FPR = —
N

o4



—rror measures: balanced accuracy

True positive rate (or sensitivity, recall):

TP
I'PR=—
P
True negative rate (or specificity)
T'N
I'NR=—
N

Possible to combine TPR and TNR in a balanced accuracy by averaging.
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—rrOr measures: area under curve
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Questions?
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The hands on session (the work)
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Data

- Visual ERP data (6x6) matrix speller

- 1:5 ratio of target to non-targets

- 15 iterations

- 12 stimuli per iteration

- 64 channels at 240 Hz
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FIind the target samples!
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Feedback
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