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The brain’s electromagnetic field (EMF)

http://www.canada-meg-consortium.org/

Time

Notation:

M/EEG signal xi [t] ∈ RN

N electrodes (32–256)

Time t = 1, . . . ,T

Trial i = 1, . . . ,M

Exp. condition ci ∈ {−1,+1}

Experimental data:

(ci ,Xi ) ∼ p(c ,X )

D = {(c1,X1), . . . , (cM ,XM)}
Typically i.i.d. sampling is
assumed
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Encoding models

How does the brain respond to an
experimental condition: p(X |c)?

Example: Event related potentials

E (x [t1]|c = +1) > E (x [t1]|c = −1)?

Disadvantage I: Hypothesis-driven

Disadvantage II: Not robust against
noise.

If |β| � |α| then the task-
irrelevant source y may make it hard
to find any effect of c on x .

xi [t1] = αci + βyi [t1]
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Decoding models

Given a certain brain-state, what is
the probability of an experimental
condition: p(c|X )?

The (optimal) Bayes classifier:
ĉi = argmaxc{p(Xi |c)}
Practical approach: ĉi = f (Xi )

I Linear discriminant analysis (LDA)
I Support Vector Machines (SVM)
I Gaussian Processes (GP)

Prediction error Pe := 1− P(ĉ = c)

Advantage: Robust against
(measurable) noise.

ĉi = sign{xi [t]− βy [t1]︸ ︷︷ ︸
f

} = ci

Disadvantage f : RN×T 7→ {−1,+1}
needs to be learned from D. xi [t1] = αci + βyi [t1]
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I Linear discriminant analysis (LDA)
I Support Vector Machines (SVM)
I Gaussian Processes (GP)

Prediction error Pe := 1− P(ĉ = c)
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Learning decoding models I

The decoder f has to be chosen from a model class F . How to choose F?

How do we determine which model generalizes best?Cross-validation!
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Learning decoding models II

In order to learn f : RN×T 7→ {−1,+1}, we require training data D. The
number of training samples needed to find the best f ∈ F scales with

the model complexity,

and the number of features N × T .

To learn a good classifier with limited training data, we should

reduce N and T without discarding information relevant for c ,

and find a representation of X that allows us to use a simple model
class, e.g. a linear decoder.
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Reducing the number of M/EEG channels (N)

Spatial filtering of M/EEG data:

y [t] = wTx[t] = wTLs[t] = gTs[t]

Source vector s[t] ∈ RK

Leadfield matrix L ∈ RN×K

Spatial filter w ∈ RN

Gain vector g ∈ RK
http:

//www.canada-meg-consortium.org/
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Beamforming

Unsupervised method based on a-priori knowledge of the spatial origin of
relevant sources:

Pick a cortical target source s∗

Compute the forward solution a = ls∗

Compute the M/EEG covariance
matrix Σ ∈ RN×N

Solve the optimization problem
w = argminw{wTΣw} s.t. wTa = 1

w = aTΣ−1/(aTΣ−1a)

Check the gain vector g = wTL

Apply the spatial filter: y [t] = wTx[t]

http://www.canada-meg-consortium.org/
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(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)
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Common Spatial Patterns (CSP)

Supervised method to find spatial filters that discriminate between two
conditions:

Covariance matrices Σc=+1 & Σc=−1

Optimization problem:

w = argmaxw

{
wTΣc=+1w
wTΣc=−1w

}
Solution: Largest λ for which
Σ−1
c=+1Σc=−1w = λw

Matlab: [V,D] = eig(Σc=+1,Σc=−1)

Columns of V are spatial filters

Rows of V are spatial patterns

M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI April 17, 2014 11 / 30

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)
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Reducing the number of time points (T)

The brain cares about oscillations:

DTFT(yi [t], ω) = 1/T
∑T−1

t=0 yi [t]e−jωt

zi [ω] = log|DTFT(yi [t], ω)|
Zi = {zi [δ], zi [θ], zi [α], zi [β], zi [γ]}
For log-bandpower features, linear
decoders appear sufficient.

(van Albada & Robinson, Frontiers in
Human Neuroscience, 2013)
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Interpretation of encoding- and decoding models

How do we determine whether a feature z ∈ Z is relevant in an
experimental setting?

If a feature is relevant, what does this mean?

Type of model Encoding model Decoding model

Theoretically

p(z |c = 1) 6= p(z |c = −1)? p(c |Z) 6= p(c |Z\z)?

Example

µ(zi |ci = 1) = µ(zi |ci = −1)? Pe(Z) > Pe(Z\z)?
Stimulus → Z c → z c − z
Z → Response c − z c − z

xi = αci + βyi ci = αxi ; yi = βxi

videolectures.net/bbci2014_grosse_wentrup_causal_inference
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Confounding by EMG-artifacts
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Attenuation of non-cortical artifacts by ICA

EEG mixing model:

x[t] = As[t]

x[t], s[t] ∈ RN , A ∈ RN×N

A: Mixing matrix, with the column ai
the source topography of si [t]

∀i , j : si ⊥⊥ sj

Independent Component Analysis (ICA):

Find W ∈ RN×N such that
ŝ[t] = W x[t] with ∀i , j : ŝi ⊥⊥ ŝj

Then ŝ[t] = s[t] and W−1 = A up to
permutation and scaling.

Identify non-cortical components

Only reproject cortical components

M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI April 17, 2014 16 / 30

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)
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M. Grosse-Wentrup (MPI-IS) M/EEG Decoding & BCI April 17, 2014 18 / 30



Studies with severely paralyzed patients outside Tübingen
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Large-scale brain networks

(Adapted from Fox et al., 2005)
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Can large-scale cortical networks be observed in the EEG?
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Neurofeedback of γ-power in superior parietal cortex (SPC)

Experimental setup:

19 healthy subjects

121-channel EEG @ 500 Hz

5 min resting-state baseline

Online beamforming targeting
parietal cortex

3x20 min feedback sessions of
parietal γ-power (55-85 Hz)

8 subjects excluded due to
EMG contamination

Average decoding accuracy:

70.3% (p = 0.002)
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Spectral specificity of bandpower-regulation in SPC
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Spatial specificity of bandpower-regulation in the γ-range

r2-map of cortical sources in the γ-range

r2-map of electromyogenic sources in the γ-range
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Self-regulation of γ-power in SPC modulates µ-rhythms

r2-map of cortical sources in the γ-range

r2-map of cortical sources in the µ-range
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Subject reports

Enhancement of γ-power in SPC was achieved by

just doing it

solving math problems

doing free-style skating in my mind

... and other tasks requiring focused attention

Attenuation of γ-power in SPC was achieved by

just doing it

not thinking

feeling my legs to be heavy

relaxing

... and other states-of-mind related to relaxed wakefulness
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Patient LEK: Decoding results

Average: 56.7% (p = 0.02, N = 780)
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Patient GH: Decoding results
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Patient GH: fMRI-study
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