M/EEG Decoding and Brain-Computer Interfacing

Moritz Grosse-Wentrup

Max Planck Institute for Intelligent Systems Department Empirical Inference Tübingen, Germany

April 17, 2014

M. Grosse-Wentrup (MPI-IS)

2 Brain-Computer Interfacing

http://www.canada-meg-consortium.org/

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

Notation:

http://www.canada-meg-consortium.org/

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

http://www.canada-meg-consortium.org/

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

M/EEG Decoding & BCI

Notation:

• M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$

http://www.canada-meg-consortium.org/

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

M/EEG Decoding & BCI

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- N electrodes (32-256)

http://www.canada-meg-consortium.org/

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

M/EEG Decoding & BCI

April 17, 2014 4 / 30

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$

http://www.canada-meg-consortium.org/

Time

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

M/EEG Decoding & BCI

M/EEG signal x_i[t] ∈ ℝ^N N electrodes (32–256)

• Time *t* = 1, . . . , *T*

Notation:

• Trial $i = 1, \ldots, M$

http://www.canada-meg-consortium.org/

Time

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$
- Trial *i* = 1, . . . , *M*
- Exp. condition $c_i \in \{-1, +1\}$

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

http://www.canada-meg-consortium.org/

Time

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$
- Trial *i* = 1, . . . , *M*
- Exp. condition $c_i \in \{-1, +1\}$

Experimental data:

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

http://www.canada-meg-consortium.org/

Time

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$
- Trial *i* = 1, . . . , *M*
- Exp. condition $c_i \in \{-1, +1\}$

Experimental data:

• $(c_i, X_i) \sim p(c, X)$

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

http://www.canada-meg-consortium.org/

Time

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$
- Trial *i* = 1, . . . , *M*
- Exp. condition $c_i \in \{-1, +1\}$

Experimental data:

• $(c_i, X_i) \sim p(c, X)$ • $\mathcal{D} = \{(c_1, X_1), \dots, (c_M, X_M)\}$

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

http://www.canada-meg-consortium.org/

Time

Notation:

- M/EEG signal $\mathbf{x}_i[t] \in \mathbb{R}^N$
- *N* electrodes (32–256)
- Time $t = 1, \ldots, T$

• Trial
$$i = 1, \ldots, M$$

• Exp. condition $c_i \in \{-1, +1\}$

Experimental data:

- $(c_i, X_i) \sim p(c, X)$
- $\mathcal{D} = \{(c_1, X_1), \dots, (c_M, X_M)\}$
- Typically i.i.d. sampling is assumed

(P.L. Nunez. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, 2005.)

• How does the brain respond to an experimental condition: p(X|c)?

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials $E(x[t_1]|c = +1) > E(x[t_1]|c = -1)?$

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials $E(x[t_1]|c = +1) > E(x[t_1]|c = -1)?$
- Disadvantage I: Hypothesis-driven

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials $E(x[t_1]|c = +1) > E(x[t_1]|c = -1)?$
- Disadvantage I: Hypothesis-driven
- Disadvantage II: Not robust against noise.

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials $E(x[t_1]|c = +1) > E(x[t_1]|c = -1)?$
- Disadvantage I: Hypothesis-driven
- Disadvantage II: Not robust against noise.

- How does the brain respond to an experimental condition: p(X|c)?
- Example: Event related potentials $E(x[t_1]|c = +1) > E(x[t_1]|c = -1)?$
- Disadvantage I: Hypothesis-driven
- Disadvantage II: Not robust against noise. If $|\beta| \gg |\alpha|$ then the task-irrelevant source y may make it hard to find any effect of c on x.

M. Grosse-Wentrup (MPI-IS)

 Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?

 Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{p(X_i | c)\}$

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{p(X_i | c)\}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)

• Prediction error
$$P_e := 1 - P(\hat{c} = c)$$

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)
- Prediction error $P_e := 1 P(\hat{c} = c)$
- Advantage: Robust against (measurable) noise.

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)
- Prediction error $P_e := 1 P(\hat{c} = c)$
- Advantage: Robust against (measurable) noise.

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)
- Prediction error $P_e := 1 P(\hat{c} = c)$
- Advantage: Robust against (measurable) noise. $\hat{c}_i = \underbrace{\text{sign}\{x_i[t] - \beta y[t_1]\}}_{c} = c_i$

- Given a certain brain-state, what is the probability of an experimental condition: p(c|X)?
- The (optimal) Bayes classifier: $\hat{c}_i = \operatorname{argmax}_c \{ p(X_i | c) \}$
- Practical approach: $\hat{c}_i = f(X_i)$
 - Linear discriminant analysis (LDA)
 - Support Vector Machines (SVM)
 - Gaussian Processes (GP)
- Prediction error $P_e := 1 P(\hat{c} = c)$
- Advantage: Robust against (measurable) noise. $\hat{c}_i = \underline{sign}\{x_i[t] - \beta y[t_1]\} = c_i$
- Disadvantage f : ℝ^{N×T} → {-1,+1} needs to be learned from D.

M. Grosse-Wentrup (MPI-IS)
(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

How do we determine which model generalizes best?

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup (MPI-IS)

How do we determine which model generalizes best?Cross-validation!

(Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning. Springer, 2009)

M. Grosse-Wentrup	(M	Ρ	-	15	į
-------------------	---	---	---	---	----	---

In order to learn $f : \mathbb{R}^{N \times T} \mapsto \{-1, +1\}$, we require training data \mathcal{D} .

In order to learn $f : \mathbb{R}^{N \times T} \mapsto \{-1, +1\}$, we require training data \mathcal{D} . The number of training samples needed to find the best $f \in \mathcal{F}$ scales with

the model complexity,

- the model complexity,
- and the number of features $N \times T$.

- the model complexity,
- and the number of features $N \times T$.

- the model complexity,
- and the number of features $N \times T$.

- the model complexity,
- and the number of features $N \times T$.

In order to learn $f : \mathbb{R}^{N \times T} \mapsto \{-1, +1\}$, we require training data \mathcal{D} . The number of training samples needed to find the best $f \in \mathcal{F}$ scales with

- the model complexity,
- and the number of features $N \times T$.

To learn a good classifier with limited training data, we should

In order to learn $f : \mathbb{R}^{N \times T} \mapsto \{-1, +1\}$, we require training data \mathcal{D} . The number of training samples needed to find the best $f \in \mathcal{F}$ scales with

- the model complexity,
- and the number of features $N \times T$.

To learn a good classifier with limited training data, we should
reduce N and T without discarding information relevant for c,

In order to learn $f : \mathbb{R}^{N \times T} \mapsto \{-1, +1\}$, we require training data \mathcal{D} . The number of training samples needed to find the best $f \in \mathcal{F}$ scales with

- the model complexity,
- and the number of features $N \times T$.

To learn a good classifier with limited training data, we should

- reduce N and T without discarding information relevant for c,
- and find a representation of X that allows us to use a simple model class, e.g. a linear decoder.

M. Grosse-Wentrup (MPI-IS)

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

Spatial filtering of M/EEG data:

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

Spatial filtering of M/EEG data:

 $\mathbf{x}[t] = L\mathbf{s}[t]$

- Source vector $\mathbf{s}[t] \in \mathbb{R}^{K}$
- Leadfield matrix $L \in \mathbb{R}^{N \times K}$

http: //www.canada-meg-consortium.org/

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

Spatial filtering of M/EEG data:

$$y[t] = \mathbf{w}^{\mathsf{T}} \mathbf{x}[t] = \mathbf{w}^{\mathsf{T}} L \mathbf{s}[t]$$

- Source vector $\mathbf{s}[t] \in \mathbb{R}^{K}$
- Leadfield matrix $L \in \mathbb{R}^{N \times K}$
- Spatial filter $\mathbf{w} \in \mathbb{R}^N$

http: //www.canada-meg-consortium.org/

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

Spatial filtering of M/EEG data:

$$y[t] = \mathbf{w}^{\mathsf{T}} \mathbf{x}[t] = \mathbf{w}^{\mathsf{T}} L \mathbf{s}[t] = \mathbf{g}^{\mathsf{T}} \mathbf{s}[t]$$

- Source vector $\mathbf{s}[t] \in \mathbb{R}^{K}$
- Leadfield matrix $L \in \mathbb{R}^{N \times K}$
- Spatial filter $\mathbf{w} \in \mathbb{R}^N$
- Gain vector $\mathbf{g} \in \mathbb{R}^{K}$

http: //www.canada-meg-consortium.org/

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

Spatial filtering of M/EEG data:

$$y[t] = \mathbf{w}^{\mathsf{T}} \mathbf{x}[t] = \mathbf{w}^{\mathsf{T}} L \mathbf{s}[t] = \mathbf{g}^{\mathsf{T}} \mathbf{s}[t]$$

- Source vector $\mathbf{s}[t] \in \mathbb{R}^{K}$
- Leadfield matrix $L \in \mathbb{R}^{N \times K}$
- Spatial filter $\mathbf{w} \in \mathbb{R}^N$
- Gain vector $\mathbf{g} \in \mathbb{R}^{K}$

http: //www.canada-meg-consortium.org/

(Baillet, Mosher & Leahy. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001)

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

• Pick a cortical target source s*

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

• Pick a cortical target source s*

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$
- Solve the optimization problem $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \{ \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w} \} \text{ s.t. } \mathbf{w}^{\mathsf{T}} \mathbf{a} = 1$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$
- Solve the optimization problem $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \{ \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w} \} \text{ s.t. } \mathbf{w}^{\mathsf{T}} \mathbf{a} = 1$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$
- Solve the optimization problem $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \{ \mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w} \} \text{ s.t. } \mathbf{w}^{\mathsf{T}} \mathbf{a} = 1$ • $\mathbf{w} = \mathbf{a}^{\mathsf{T}} \Sigma^{-1} / (\mathbf{a}^{\mathsf{T}} \Sigma^{-1} \mathbf{a})$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)
Beamforming

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$
- Solve the optimization problem $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \{ \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w} \} \text{ s.t. } \mathbf{w}^{\mathsf{T}} \mathbf{a} = 1$
- $\mathbf{w} = \mathbf{a}^{\mathsf{T}} \Sigma^{-1} / (\mathbf{a}^{\mathsf{T}} \Sigma^{-1} \mathbf{a})$

• Check the gain vector
$$\mathbf{g} = \mathbf{w}^{\mathsf{T}} L$$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

Beamforming

Unsupervised method based on a-priori knowledge of the spatial origin of relevant sources:

- Pick a cortical target source s*
- Compute the forward solution $\mathbf{a} = \mathbf{I}s^*$
- Compute the M/EEG covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times N}$
- Solve the optimization problem $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \{ \mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w} \} \text{ s.t. } \mathbf{w}^{\mathsf{T}} \mathbf{a} = 1$
- $\mathbf{w} = \mathbf{a}^{\mathsf{T}} \Sigma^{-1} / (\mathbf{a}^{\mathsf{T}} \Sigma^{-1} \mathbf{a})$
- Check the gain vector $\mathbf{g} = \mathbf{w}^{\mathsf{T}} L$
- Apply the spatial filter: $y[t] = \mathbf{w}^{\mathsf{T}} \mathbf{x}[t]$

http://www.canada-meg-consortium.org/

(Van Veen et al. Localization of brain electrical activity via LCMV spatial filtering. IEEE TBME, 1997)

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

• Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$
- Matlab: $[V,D] = eig(\Sigma_{c=+1}, \Sigma_{c=-1})$

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$
- Matlab: $[V,D] = eig(\Sigma_{c=+1}, \Sigma_{c=-1})$
- Columns of V are spatial filters

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$
- Matlab: $[V,D] = eig(\Sigma_{c=+1}, \Sigma_{c=-1})$
- Columns of V are spatial filters

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$
- Matlab: $[V,D] = eig(\Sigma_{c=+1}, \Sigma_{c=-1})$
- Columns of V are spatial filters
- Rows of V are spatial patterns

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

Supervised method to find spatial filters that discriminate between two conditions:

- Covariance matrices $\Sigma_{c=+1}$ & $\Sigma_{c=-1}$
- Optimization problem: $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=+1} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma}_{c=-1} \mathbf{w}} \right\}$
- Solution: Largest λ for which $\sum_{c=+1}^{-1} \sum_{c=-1} \mathbf{w} = \lambda \mathbf{w}$
- Matlab: $[V,D] = eig(\Sigma_{c=+1}, \Sigma_{c=-1})$
- Columns of V are spatial filters
- Rows of V are spatial patterns

(Ramoser et al. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE TBME, 2000)

The brain cares about oscillations:

The brain cares about oscillations:

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

The brain cares about oscillations:

• DTFT
$$(y_i[t], \omega) = 1/T \sum_{t=0}^{T-1} y_i[t] e^{-j\omega t}$$

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

The brain cares about oscillations:

- DTFT $(y_i[t], \omega) = 1/T \sum_{t=0}^{T-1} y_i[t] e^{-j\omega t}$
- $z_i[\omega] = \log |\mathsf{DTFT}(y_i[t], \omega)|$

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

The brain cares about oscillations:

- DTFT $(y_i[t], \omega) = 1/T \sum_{t=0}^{T-1} y_i[t] e^{-j\omega t}$
- $z_i[\omega] = \log |\mathsf{DTFT}(y_i[t], \omega)|$
- $\mathcal{Z}_i = \{z_i[\delta], z_i[\theta], z_i[\alpha], z_i[\beta], z_i[\gamma]\}$

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

The brain cares about oscillations:

- DTFT $(y_i[t], \omega) = 1/T \sum_{t=0}^{T-1} y_i[t] e^{-j\omega t}$
- $z_i[\omega] = \log |\mathsf{DTFT}(y_i[t], \omega)|$
- $\mathcal{Z}_i = \{z_i[\delta], z_i[\theta], z_i[\alpha], z_i[\beta], z_i[\gamma]\}$

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

M. Grosse-Wentrup (MPI-IS)

The brain cares about oscillations:

- DTFT $(y_i[t], \omega) = 1/T \sum_{t=0}^{T-1} y_i[t] e^{-j\omega t}$
- $z_i[\omega] = \log |\mathsf{DTFT}(y_i[t], \omega)|$
- $\mathcal{Z}_i = \{z_i[\delta], z_i[\theta], z_i[\alpha], z_i[\beta], z_i[\gamma]\}$
- For log-bandpower features, linear decoders appear sufficient.

(van Albada & Robinson, Frontiers in Human Neuroscience, 2013)

M. Grosse-Wentrup (MPI-IS)

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

How do we determine whether a feature z ∈ Z is relevant in an experimental setting?

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature z ∈ Z is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically		
Example		

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	
Example		

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	$p(z c=1) \neq p(z c=-1)?$	
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)?$
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)?$
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}(\mathcal{Z}) > {\it Pe}(\mathcal{Z}ackslash z)?$

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)$?
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}({\mathcal Z}) > {\it Pe}({\mathcal Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$		
$\mathcal{Z} \to Response$		

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)?$
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}({\mathcal Z}) > {\it Pe}({\mathcal Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$	c ightarrow z	c-z
$\mathcal{Z} \to Response$		

- How do we determine whether a feature z ∈ Z is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	$p(z c=1) \neq p(z c=-1)?$	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)$?
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}({\mathcal Z}) > {\it Pe}({\mathcal Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$	c ightarrow z	c-z
$\mathcal{Z} \to Response$		

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature z ∈ Z is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)?$
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}({\mathcal Z}) > {\it Pe}({\mathcal Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$	c ightarrow z	c-z
$\mathcal{Z} \to Response$	c-z	c-z

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature z ∈ Z is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)$?
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}(\mathcal{Z}) > {\it Pe}(\mathcal{Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$	c ightarrow z	c-z
$\mathcal{Z} \to Response$	c-z	c-z

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

- How do we determine whether a feature $z \in \mathcal{Z}$ is relevant in an experimental setting?
- If a feature is relevant, what does this mean?

Type of model	Encoding model	Decoding model
Theoretically	p(z c=1) eq p(z c=-1)?	$p(c \mathcal{Z}) \neq p(c \mathcal{Z} \setminus z)$?
Example	$\mu(z_i c_i = 1) = \mu(z_i c_i = -1)?$	${\it Pe}(\mathcal{Z}) > {\it Pe}(\mathcal{Z}ackslash z)?$
$Stimulus \to \mathcal{Z}$	c ightarrow z	c-z
$\mathcal{Z} \to Response$	c-z	c-z

videolectures.net/bbci2014_grosse_wentrup_causal_inference

(Weichwald et al. Causal and anti-causal learning in pattern recognition for neuroimaging. PRNI, 2014)

M. Grosse-Wentrup (MPI-IS)

Confounding by EOG-artifacts

Confounding by EOG-artifacts

Eye-blinking

Confounding by EOG-artifacts

Eye-blinking

Horizontal eye-tracking 2 - 4 Hz 4 - 8 Hz 8 - 12 Hz

30 - 40 Hz

85 - 125 Hz

-0.2

M. Grosse-Wentrup (MPI-IS)

April 17, 2014 14 / 30

Confounding by EMG-artifacts

Confounding by EMG-artifacts

M. Grosse-Wentrup (MPI-IS)

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BC

April 17, 2014 16 / 30

EEG mixing model:

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BC

April 17, 2014 16 / 30

 $\frac{\text{EEG mixing model:}}{\bullet \mathbf{x}[t] = A\mathbf{s}[t]}$

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BCI

April 17, 2014 16 / 30

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)

M/EEG Decoding & BC

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

• Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$
- Then $\hat{\mathbf{s}}[t] = \mathbf{s}[t]$ and $W^{-1} = A$ up to permutation and scaling.

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$
- Then $\hat{\mathbf{s}}[t] = \mathbf{s}[t]$ and $W^{-1} = A$ up to permutation and scaling.
- Identify non-cortical components

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$
- Then $\hat{\mathbf{s}}[t] = \mathbf{s}[t]$ and $W^{-1} = A$ up to permutation and scaling.
- Identify non-cortical components

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$
- Then $\hat{\mathbf{s}}[t] = \mathbf{s}[t]$ and $W^{-1} = A$ up to permutation and scaling.
- Identify non-cortical components

(Grosse-Wentrup et al. How to Test the Quality of Reconstructed Sources in ICA of EEG/MEG Data. PRNI, 2013)

M/EEG Decoding & BC

EEG mixing model:

- $\mathbf{x}[t] = A\mathbf{s}[t]$
- $\mathbf{x}[t], \mathbf{s}[t] \in \mathbb{R}^N, \ A \in \mathbb{R}^{N \times N}$
- A: Mixing matrix, with the column a_i the source topography of s_i[t]
- $\forall i, j : s_i \perp s_j$

Independent Component Analysis (ICA):

- Find $W \in \mathbb{R}^{N \times N}$ such that $\hat{\mathbf{s}}[t] = W \mathbf{x}[t]$ with $\forall i, j : \hat{s}_i \perp \hat{s}_j$
- Then $\hat{\mathbf{s}}[t] = \mathbf{s}[t]$ and $W^{-1} = A$ up to permutation and scaling.
- Identify non-cortical components
- Only reproject cortical components

Studies with severely paralyzed patients in Tübingen

Patient	Diagnosis	Age ^a	Sex	Duration of participation/year	Level of impairment	Type of BCI and average CRR ^b			Level of success ^c	CRR published in
				of study entry	_	SCP	SMR	P300		
HPS	ALS spinal	41	m	Present/1996	4	87		73	4 (SCP), 3 (P300) ^f	Kübler et al. (1999)
JB	ALS bulbar	49	m	2 years/1997	4	86			4 (SCP)	Birbaumer et al. (1999)
MP	ALS spinal	37	m	2 years/1997	3	66			3 (SCP)	Kübler et al. (1999)
MW	Brain stem stroke	26	f	Months/1995	4	Xd			2 (SCP)	Kuebler et al. (1998)
HE	ALS spinal	42	m	Present/1998	3	94			4 (SCP)	Neumann and Birbaumer (2003)
EK	ALS spinal	66	m	Months/1998	2	57			2 (SCP)	Neumann and Birbaumer (2003)
MZ	ALS spinal	31	m	Months/2000	4	70			3 (SCP)	Kübler et al. (2001)
LB	ALS	63	m	Months/1999	5	48			1 (SCP)	Neumann and Birbaumer (2003)
NB	ALS	40	m	Months/2000	5	59			2 (SCP)	Neumann and Birbaumer (2003)
KI	Cerebral paresis	33	m	Months/1998	3	50			1 (SCP)	Kübler (2000)
TK	Muscular dystrophy	33	m	Months/1998/2006	4	43		59	1 (SCP), 2 (P300) ^f	Kübler (2000)
RCS	ALS spinal	56	m	1 year/2003	4		77	69	3 (SMR), 2 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
HAC	ALS bulbar	67	m	2 years/2003	2		78	86	3 (SMR), 4 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
UBA	ALS spinal	47	f	Present/2004	3		81	82	3 (SMR), 4 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
HM	ALS spinal	53	m	3 years/2002	2	67	76	32	2 (SCP), 3 (SMR), 2 (P300)	Kübler et al. (2004), Kübler et al. (2005)
										and Nijboer et al. (2008)
JAK	ALS spinal	39	m	2 years/2005	3			50	2 (P300)	Nijboer et al. (2008)
LEK	ALS spinal	49	f	Present/2004	3			80	3 (P300)	Nijboer et al. (2008)
IR	ALS spinal	42	f	Present/2003	5	54	43		1 (SCP), 1 (SMR) ^f	Kübler et al. (2004)
SM	ALS spinal	35	m	Months/2002	2	84			3 (SCP)	Kübler et al. (2004)
KW	ALS spinal	47	f	Months/2002	2	78			3 (SCP)	Kübler et al. (2004)
GW	ALS bulbar	59	f	Months/2002	2	70			3 (SCP)	Kübler et al. (2004)
GB	ALS spinal	62	f	Months/2002	2	79			3 (SCP)	Kübler et al. (2004)
KR	ALS spinal	35	f	Present/2002	3	62		87	2 (SCP), 4 (P300)	Kübler et al. (2004) and Nijboer et al. (2008)
HJZ	ALS	60	m	Months/2002	3	74			3 (SCP)	Kübler et al. (2004)
RB	ALS, spinal	64	f	Months/2002	1	68			2 (SCP)	Kübler et al. (2004)
JF	ALS spinal	50	m	Months/2002	1	61			2 (SCP)	Kübler et al. (2004)
GR	ALS spinal	37	m	Present/2005	4			74	3 (P300) ^f	
PR	Heart attack	55	m	Years ⁱ /2002	5	50	Xe	X ^g	1 (SCP) ^f , 1 (SMR), 1 (P300) ^f	Hill et al. (2006)
AG	Chronic GBS ^j	42	f	Years ⁱ /2000	5	50	Xe	X ^g	1 (SCP) ^f , 1 (SMR), 1 (P300) ^f	Hill et al. (2006)
WER	ALS spinal	63	m	Days/2005	5		Xe	Xg	1 (SMR), 1 (P300) ^f	Hill et al. (2006)
G	Stroke	61	m	One session/2005	4		Xe		1 (SMR)	Hill et al. (2006)
WEW	ALS spinal	46	m	Months/2004	4			X ⁸	1 (P300)	Nijboer et al. (2008)
EM	ALS spinal	58	m	Weeks/2002	5	62			2 (SCP)	Hinterberger et al. (2005)
VWI	ALS spinal	57	f	3 sessions/2007	4			63	2 (P300) ^f	
UB	ALS spinal		m	Months/1997	2	X ^h				(adapted from Kübler et al., 2008)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BCI

Studies with severely paralyzed patients in Tübingen

Patient	Diagnosis	Age ^a	Sex	Duration of participation/year	Level of impairment	Type of BCI and average CRR ^b			Level of success ^c	CRR published in
				or study entry	_	SCP	SMR	P300		
HPS	ALS spinal	41	m	Present/1996	4	87		73	4 (SCP), 3 (P300) ^f	Kübler et al. (1999)
JB	ALS bulbar	49	m	2 years/1997	4	86			4 (SCP)	Birbaumer et al. (1999)
MP	ALS spinal	37	m	2 years/1997	3	66			3 (SCP)	Kübler et al. (1999)
MW	Brain stem stroke	26	f	Months/1995	4	Xd			2 (SCP)	Kuebler et al. (1998)
HE	ALS spinal	42	m	Present/1998	3	94			4 (SCP)	Neumann and Birbaumer (2003)
EK	ALS spinal	66	m	Months/1998	2	57			2 (SCP)	Neumann and Birbaumer (2003)
MZ	ALS spinal	31	m	Months/2000	4	70			3 (SCP)	Kübler et al. (2001)
LB	ALS	63	m	Months/1999	5	48			1 (SCP)	Neumann and Birbaumer (2003)
NB	ALS	40	m	Months/2000	5	59			2 (SCP)	Neumann and Birbaumer (2003)
KI	Cerebral paresis	33	m	Months/1998	3	50			1 (SCP)	Kübler (2000)
TK	Muscular dystrophy	33	m	Months/1998/2006	4	43		59	1 (SCP), 2 (P300) ^f	Kübler (2000)
RCS	ALS spinal	56	m	1 year/2003	4		77	69	3 (SMR), 2 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
HAC	ALS bulbar	67	m	2 years/2003	2		78	86	3 (SMR), 4 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
UBA	ALS spinal	47	f	Present/2004	3		81	82	3 (SMR), 4 (P300)	Kübler et al. (2005) and Nijboer et al. (2008)
HM	ALS spinal	53	m	3 years/2002	2	67	76	32	2 (SCP), 3 (SMR), 2 (P300)	Kübler et al. (2004), Kübler et al. (2005)
										and Nijboer et al. (2008)
JAK	ALS spinal	39	m	2 years/2005	3			50	2 (P300)	Nijboer et al. (2008)
LEK	ALS spinal	49	f	Present/2004	3			80	3 (P300)	Nijboer et al. (2008)
IR	ALS spinal	42	f	Present/2003	5	54	43		1 (SCP), 1 (SMR) ^f	Kübler et al. (2004)
SM	ALS spinal	35	m	Months/2002	2	84			3 (SCP)	Kübler et al. (2004)
KW	ALS spinal	47	f	Months/2002	2	78			3 (SCP)	Kübler et al. (2004)
GW	ALS bulbar	59	f	Months/2002	2	70			3 (SCP)	Kübler et al. (2004)
GB	ALS spinal	62	f	Months/2002	2	79			3 (SCP)	Kübler et al. (2004)
KR	ALS spinal	35	f	Present/2002	3	62		87	2 (SCP), 4 (P300)	Kübler et al. (2004) and Nijboer et al. (2008)
HJZ	ALS	60	m	Months/2002	3	74			3 (SCP)	Kübler et al. (2004)
RB	ALS, spinal	64	f	Months/2002	1	68			2 (SCP)	Kübler et al. (2004)
JF	ALS spinal	50	m	Months/2002	1	61			2 (SCP)	Kübler et al. (2004)
GR	ALS spinal	37	m	Present/2005	4			74	3 (P300) ^f	
PR	Heart attack	55	m	Years ⁱ /2002	5	50	Xe	Xg	1 (SCP) ^f , 1 (SMR), 1 (P300) ^f	Hill et al. (2006)
AG	Chronic GBS ^j	42	f	Years ⁱ /2000	5	50	Xe	Xg	1 (SCP) ^f , 1 (SMR), 1 (P300) ^f	Hill et al. (2006)
WER	ALS spinal	63	m	Days/2005	5		Xe	Xg	1 (SMR), 1 (P300) ^f	Hill et al. (2006)
G	Stroke	61	m	One session/2005	4		Xe		1 (SMR)	Hill et al. (2006)
WEW	ALS spinal	46	m	Months/2004	4			Xg	1 (P300)	Nijboer et al. (2008)
EM	ALS spinal	58	m	Weeks/2002	5	62			2 (SCP)	Hinterberger et al. (2005)
VWI	ALS spinal	57	f	3 sessions/2007	4			63	2 (P300) ^f	
UB	ALS spinal		m	Months/1997	2	Xh				(adapted from Kübler et al., 2008)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BCI

April 17, 2014 18 / 30

Studies with severely paralyzed patients outside Tübingen

Diagnosis	Level of impairment	BCI type	Performance (CRR)	Level of success	Publication
SCI ^a (T7)	2	SMR	96/89	3	McFarland et al. (2005) and Wolpaw and McFarland (2004)
SCI (C6)	2	SMR	58/92/>60-<90 ^b	3	McFarland et al. (2005), Wolpaw and McFarland (2004) and
					McFarland et al. (2003)
Cerebral palsy	2	SMR	>60-<90 ^b		McFarland et al. (2003)
ALS	1	SMR	70–80 ^b >70 ^b	3	Wolpaw et al. (1997) and Miner et al. (1998)
ALS	2	P300	80 ^c	3	Sellers and Donchin (2006)
ALS	2	P300	73°	3	Sellers and Donchin (2006)
ALS	3	P300	62 ^c	2	Sellers and Donchin (2006)
SCI (C5)	2	SMR	73	3	Müller-Putz et al. (2005)
SCI (TH8)	2	SMR	95°	3	Krausz et al. (2003)
SCI (L1, incomplete)	2	SMR	72 ^c	3	Krausz et al. (2003)
SCI (L1)	2	SMR	80 ^c	3	Krausz et al. (2003)
SCI (TH12 (incomplete), L1, L4 (complete))	2	SMR	80 ^c	3	Krausz et al. (2003)
Cerebral palsy	3	SMR	70	3	Neuper et al. (2003)
SCI (C5)	2	SMR	≤100/grasp function ^d	3	Pfurtscheller et al. (2000), Pfurtscheller et al. (2003)
ALS	3	SMR	83	3	Müller-Putz et al. (2004)
ALS	3	P300	80 ^c	3	Piccione et al. (2006)
Brain stem stroke	4	P300	63°	2	Piccione et al. (2006)
SCI (C4)	2	P300	76 ^c	3	Piccione et al. (2006)
GBS	2	P300	67 ^c	2	Piccione et al. (2006)
Multiple sclerosis	3	P300	58°	2	Piccione et al. (2006)
SCI (C4 or C5 complete)	2	SMR	87 ^c	3	Kauhanen et al. (2006)
SCI (C4 or C5 complete)	2	SMR	88°	3	Kauhanen et al. (2006)
SCI (C4 or C5 complete)	2	SMR	69 ^c	2	Kauhanen et al. (2006)
Cerebral palsy	3	P300	100 ^c	3	Hoffmann et al. (2008)
Multiple sclerosis	3	P300	100 ^c	3	Hoffmann et al. (2008)
ALS	3	P300	100 ^c	3	Hoffmann et al. (2008)
Traumatic brain and spinal cord injury, C4 level	3	P300	100 ^c	3	Hoffmann et al. (2008)
Post-anoxic encephalopathy	3	P300	Not reported	1	Hoffmann et al. (2008) (adapted from Kübler et al., 2008)

Large-scale brain networks

(Adapted from Fox et al., 2005)

Can large-scale cortical networks be observed in the EEG?

(Grosse-Wentrup & Schölkopf, High Gamma-Power Predicts Performance in SMR BCIs, Journal of Neural Engineering, 2012)

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BCI

April 17, 2014 21 / 30

Can large-scale cortical networks be observed in the EEG?

(Grosse-Wentrup & Schölkopf, High Gamma-Power Predicts Performance in SMR BCIs, Journal of Neural Engineering, 2012)

M/EEG Decoding & BC

Experimental setup:

• 19 healthy subjects

- 19 healthy subjects
- 121-channel EEG @ 500 Hz

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex
- 3x20 min feedback sessions of parietal γ-power (55-85 Hz)

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex
- 3x20 min feedback sessions of parietal γ-power (55-85 Hz)

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex
- 3x20 min feedback sessions of parietal γ-power (55-85 Hz)
- 8 subjects excluded due to EMG contamination

Experimental setup:

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex
- 3x20 min feedback sessions of parietal γ-power (55-85 Hz)
- 8 subjects excluded due to EMG contamination

Average decoding accuracy:

Experimental setup:

- 19 healthy subjects
- 121-channel EEG @ 500 Hz
- 5 min resting-state baseline
- Online beamforming targeting parietal cortex
- 3x20 min feedback sessions of parietal γ-power (55-85 Hz)
- 8 subjects excluded due to EMG contamination

Average decoding accuracy:

• 70.3% (p = 0.002)

Spectral specificity of bandpower-regulation in SPC

Spatial specificity of bandpower-regulation in the $\gamma\text{-range}$

 r^2 -map of cortical sources in the γ -range

Spatial specificity of bandpower-regulation in the $\gamma\text{-range}$

 r^2 -map of electromyogenic sources in the γ -range

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BC

Self-regulation of γ -power in SPC modulates μ -rhythms

 r^2 -map of cortical sources in the γ -range

 r^2 -map of cortical sources in the μ -range

M. Grosse-Wentrup (MPI-IS)

Enhancement of $\gamma\mbox{-}{\rm power}$ in SPC was achieved by

• just doing it

- just doing it
- solving math problems

- just doing it
- solving math problems
- doing free-style skating in my mind

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

Enhancement of $\gamma\mbox{-}{\rm power}$ in SPC was achieved by

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

Attenuation of γ -power in SPC was achieved by

just doing it

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

- just doing it
- not thinking

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

- just doing it
- not thinking
- feeling my legs to be heavy

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

- just doing it
- not thinking
- feeling my legs to be heavy
- relaxing

- just doing it
- solving math problems
- doing free-style skating in my mind
- ... and other tasks requiring focused attention

- just doing it
- not thinking
- feeling my legs to be heavy
- relaxing
- ... and other states-of-mind related to relaxed wakefulness

7 8 9 10

M/EEG Decoding & BCI

M/EEG Decoding & BCI

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BC

April 17, 2014 28 / 30

M. Grosse-Wentrup (MPI-IS)

M/EEG Decoding & BC

April 17, 2014 28 / 30

Patient GH: fMRI-study

Patient GH: fMRI-study

r² Delta-Ba

Patient GH: fMRI-study

M/EEG Decoding & BCI

Max Planck Institutes:

- Bernd Battes
- Alexander Bretin
- Tatiana Fomina
- Christian Förster
- Marius Klug
- Gabriele Lohmann
- Natalie Widmann
- Bernhard Schölkopf

- Nadine Simon
- Sebastian Weichwald

University of Tübingen:

- Michael Erb
- Thomas Ethofer

http://brain-computer-interfaces.net