Causal modeling of fMRI: temporal precedence and spatial exploration

Alard Roebroeck

Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University

Overview

• Intro: What is...

- Brain Connectivity
- Causality

Problems, solutions, applications

- The missing region problem
 - Solution: structural model exploration
 - Application: Task switching
- The missing time problem
 - Solution: generative model inversion
 - Application: Epileptic seizures
- The missing model problem
 - Solution: Don't throw away the less-parametric models
 - Application: Social communication
- Summary & Conclusions

Connectivity

Anatomical connectivity

A direct anatomical connectionTracer studies, DTI

Functional connectivity

- Correlation between activities
- ICA, PCA

Effective connectivity

 Influence one neural system exerts over another (Friston et al., 1993)

Covariance Structural Equation Modeling, Dynamic Causal Modeling, Granger Causality

Functional & Effective Connectivity

- Functional connectivity
 - Association (mutual information)
 - Localization of whole networks
- Effective connectivity
 - Uncover network mechanisms (causal influence)
 - Directed vs. undirected
 - Direct vs. indirect
 - Generative model

Causality investigation: Associative & Interventional

'Naturally' working system

Unnaturally 'perturbed' system Naturally 'perturbed' system

Effective connectivity

Effective connectivity

Structural model& priors

- ROI selection
- Graph selection

Dynamical model& priors

- Deterministic vs.
 stochastic models
- Linear vs. non-linear
- Forward observation
 models

$$\begin{pmatrix} x[t] \\ y[t] \end{pmatrix} = \sum_{i=1}^{p} \mathbf{A}_{i} \begin{pmatrix} x[t-i] \\ y[t-i] \end{pmatrix} + \begin{pmatrix} e_{x|y} \\ e_{y|x} \end{pmatrix} \quad \operatorname{cov} \begin{pmatrix} e_{x|y} \\ e_{y|x} \end{pmatrix} = \begin{pmatrix} \sigma_{x|y}^{2} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{y|x}^{2} \end{pmatrix} = \Sigma$$

How does it interact: signal model

Roebroeck et al., NI, 2012

Overview

- Intro: What is...
 - Brain Connectivity
 - Causality

Problems, solutions, applications

- The missing region problem
 - Solution: structural model exploration
 - Application: Task switching
- The missing time problem
 - Solution: generative model inversion
 - Application: Epileptic seizures
- The missing model problem
 - Solution: Don't throw away the less-parametric models
 - Application: Social communication
- Summary & Conclusions

- Danger of strong structural models: Missing region problem
- When important regions are 'left out' (of the anatomical model), ANY correct method will give 'wrong' answers
- Spurious inference on connections

Granger causality mapping (GCM)

Random effects level GCMs

Roebroeck, NI 2005; Goebel, MRI 2004

Granger causality (G-causality, GC)

• If we can predict x[t] better using {X-, Y-} than using {X-} alone, then we say that *y Granger causes x*

• If we can predict x[t] better using {X-, Y-, y[t]} than using {X-, Y-}, then we say that there is *instantaneous correlation between y and x*

Application: task switching

Goebel et al., MRI (2003), Roebroeck et al., NI (2005)

Granger causality mapping (GCM)

Experimental modulation:

- Functional assignment
- Avoid HRF confound

Roebroeck, NI 2005; Goebel, MRI 2004

Missing regions: Solutions

- Structural model exploration is important
- By a mapping approach
 - Psycho-Physiological Interaction mapping
 - PPI (Friston et al., 1997)
 - GCM
- By post-hoc network discovery
 - (Friston et al., 2012)
- By large G-causality models
 - Valdes-Sosa et al. (2004, 2005), Tang et al. (2012)

Overview

- Intro: What is...
 - Brain Connectivity
 - Causality

Problems, solutions, applications

- The missing region problem
 - Solution: structural model exploration
 - Application: Task switching
- The missing time problem
 - Solution: generative model inversion
 - Application: Epileptic seizures
- The missing model problem
 - Solution: Don't throw away the less-parametric models
 - Application: Social communication
- Summary & Conclusions

Missing time problem

Part1

- fMRI: Slowly sampling fast-changing (and interacting) processes
- Part2a

- Hemodynamics: sampling low-pass filtered processes
- Part2b
 - *Variable* Hemodynamics in different
 brain areas

Part1: Slow sampling

http://jmlr.csail.mit.edu/proceedings/papers/v12/roebroeck11/roebroeck11.pdf

M

Winnon why or

 X_2

0

X₁

 X_3

0

0

X₂

 X_4

0

0

0

X₃

 X_4

Slow sampling

- When modeling slowly sampled dynamics...
- ...with a discrete multivariate (D>2) model
- Spurious direct causalities can appear
 - Even if no regions are missing
- Having said this:
 - Bi-variate (D=2) models are exempt
 - Causal direction is maintained
 - 'Just' a parametrization problem

 $X[k\Delta t] = exp(\Delta tA)X[(k-1)\Delta t] + e$

Sampling & Hemodynamics

Roebroeck, NI 2005

Part2: *Variable* Hemodynamics

- Caution needed in applying and interpreting temporal precedence based causality
- Tools:
 - Studying temporally integrated signals for slow processes (e.g. fatigue; Deshpande, HBM, 2009)
 - Finding experimental modulation of causality (intervention!)
 - Combining fMRI with EEG or MEG
 - Hemodynamic deconvolution by inverting generative models

Dynamic Causal Modeling (DCM)

Hemodynamic deconvolution

Application: epilepsy

- An animal study of neural drivers in epilepsy
 - 6 rats
 - Simultaneous EEG and fMRI
 - Intracranial iEEG in 3 areas

David et al., PLoS Biology, 2008

Application: epilepsy

- Rat study of epilepsy
- Simultaneous fMRI/EEG

Gold standard model

Granger using deconvolution

Missing time: solutions

Part1

- Bi-variate discrete-time modeling (GCM)
- Parametrizing the model for missing time (continuous-time models)
- Part2
 - Deconvolution by inverting a generative model of hemodynamics (DCM)
 - Experimental modulation of interactions
 - Independent data (e.g. EEG/MEG)

Overview

- Intro: What is...
 - Brain Connectivity
 - Causality

Problems, solutions, applications

- The missing region problem
 - Solution: structural model exploration
 - Application: Task switching
- The missing time problem
 - Solution: generative model inversion
 - Application: Epileptic seizures
- The missing model problem
 - Solution: Don't throw away the less-parametric models
 - Application: Social communication
- Summary & Conclusions

Missing model problem

- We do not have an appropriate generative model for many interacting processes
 - Or, when we do, we can not invert it: it is not identifiable

Neurodynamics model

Neurodynamics model

- Which one is realistic enough and identifiable?
- 1-state, 2-state, 3-state,... _

Model inversion

hemodynamic response

Hemodynamics model ۲

- Observation model for fMRI
- Other ones for EEG/MEG

Application: Social communication

Mapping the information flow from one brain to another during gestural communication

Marleen B. Schippers^a, Alard Roebroeck^b, Remco Renken^a, Luca Nanetti^a, and Christian Keysers^{a,c,1}

^aSocial Brain Laboratory, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AW, Groningen, The Netherlands; ^bDepartment of Cognitive Neuroscience, Faculty of Psychology, University of Maastricht, 6229 ER, Maastricht, The Netherlands; and ^cSocial Brain Laboratory, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, The Netherlands

Schippers et al, PNAS, 2010

Missing model problem

- Hard to specify a generative model for the full causal chain between brains
- Less-parametric G-causality can still be applied

Application: Social communication

Mapping influence between brains

Schippers et al, PNAS, 2010

Application: Social communication

Mapping influence between brains

Schippers et al, PNAS, 2010

Missing models: solutions

- Find and use more realistic (&complex) neurodynamics models and the data to identify them from
- But don't throw out less-parametric models that can capture largely unknown mechanisms...

Summary & Conclusion

Causality in fMRI: Yes!

- Intervention: task design
- Temporal precedence: signal dynamics
- Good stochastic dynamic models use **both**

Missing regions

Structural model exploration

Missing time

- Bi-variate mapping
- Inversion of hemodynamic models

Missing models

- Think about more parametric...
- ...and less-parametric neuronal models

Thanks for collaboration & discussion

- Maastricht
 - Rainer Goebel
 - Elia Formisano
 - Martin Havlicek

- Groningen / Amsterdam
 - Christian Keysers
 - Marleen Schippers

- Havanna
 - Pedro Valdes-Sosa
- London, FIL
 - Karl Friston
 - Jean Daunizeau

- Brighton
 - Anil Seth
- Grenoble
 - Olivier David
- Oxford
 - Steve Smith