Causal modeling of fMRI: temporal precedence and spatial exploration

Alard Roebroeck

Maastricht Brain Imaging Center (MBIC)
Faculty of Psychology & Neuroscience
Maastricht University
Overview

• **Intro: What is…**
 – Brain Connectivity
 – Causality

• **Problems, solutions, applications**
 – The missing region problem
 – Solution: structural model exploration
 – Application: Task switching
 – The missing time problem
 – Solution: generative model inversion
 – Application: Epileptic seizures
 – The missing model problem
 – Solution: Don’t throw away the less-parametric models
 – Application: Social communication

• **Summary & Conclusions**
Connectivity

- **Anatomical connectivity**
 - A direct anatomical connection
 - Tracer studies, DTI

- **Functional connectivity**
 - Correlation between activities
 - ICA, PCA

- **Effective connectivity**
 - Influence one neural system exerts over another (Friston et al., 1993)
 - Covariance Structural Equation Modeling, Dynamic Causal Modeling, Granger Causality
Functional & Effective Connectivity

- **Functional connectivity**
 - Association (mutual information)
 - Localization of whole networks

- **Effective connectivity**
 - Uncover network mechanisms (causal influence)
 - Directed vs. undirected
 - Direct vs. indirect
 - Generative model
Causality investigation:
Associative & Interventional

‘Naturally’ working system
Unnaturally ‘perturbed’ system
Naturally ‘perturbed’ system
Effective connectivity

brain -> data

measurement

Effective connectivity modeling

Structural model & priors -> Mathematical model & priors

Inferred model
Effective connectivity

Structural model & priors
- ROI selection
- Graph selection

Dynamical model & priors
- Deterministic vs. stochastic models
- Linear vs. non-linear
- Forward observation models

$A_i \left[x_{t-i} \right] + e_{xy} \text{ cov} e_{jx} = \left(\sigma_{xy}^2 \sigma_{xy}^2 \right) = \Sigma$

How does it interact: signal model

Roebroeck et al., NI, 2012
Overview

• Intro: What is…
 – Brain Connectivity
 – Causality

• Problems, solutions, applications
 – The missing region problem
 – Solution: structural model exploration
 – Application: Task switching
 – The missing time problem
 – Solution: generative model inversion
 – Application: Epileptic seizures
 – The missing model problem
 – Solution: Don’t throw away the less-parametric models
 – Application: Social communication

• Summary & Conclusions
Missing region problem

- Danger of strong structural models: Missing region problem
- When important regions are ‘left out’ (of the anatomical model), ANY correct method will give ‘wrong’ answers
- Spurious inference on connections
Granger causality mapping (GCM)

Random effects level GCMs

Roebroeck, NI 2005; Goebel, MRI 2004
Granger causality (G-causality, GC)

- If we can predict $x[t]$ better using $\{X-, Y-\}$ than using $\{X-\}$ alone, then we say that y Granger causes x.
- If we can predict $x[t]$ better using $\{X-, Y-, y[t]\}$ than using $\{X-, Y-\}$, then we say that there is instantaneous correlation between y and x.
Application: task switching

Goebel et al., MRI (2003), Roebroeck et al., NI (2005)
Granger causality mapping (GCM)

Experimental modulation:
- Functional assignment
- Avoid HRF confound

Roebroeck, NI 2005; Goebel, MRI 2004
• **Structural model exploration is important**
• **By a mapping approach**
 – Psycho-Physiological Interaction mapping
 • PPI (Friston et al., 1997)
 – GCM
• **By post-hoc network discovery**
 – (Friston et al., 2012)
• **By large G-causality models**
Overview

• **Intro: What is…**
 – Brain Connectivity
 – Causality

• **Problems, solutions, applications**
 – The missing region problem
 – Solution: structural model exploration
 – Application: Task switching
 – The missing time problem
 – Solution: generative model inversion
 – Application: Epileptic seizures
 – The missing model problem
 – Solution: Don’t throw away the less-parametric models
 – Application: Social communication

• **Summary & Conclusions**
Missing time problem

• **Part 1**
 – fMRI: Slowly sampling fast-changing (and interacting) processes

• **Part 2a**
 – Hemodynamics: sampling low-pass filtered processes

• **Part 2b**
 – *Variable* Hemodynamics in different brain areas

![Graph showing Neural Activity, HRF, and BOLD signal with Corr Coef - 0.52]
Part 1: Slow sampling

\[dX = AXdt + d\omega \]

\[X[k\Delta t] = BX[(k-1)\Delta t] + e \]

Spurious Direct Connections

Slow sampling

- **When modeling slowly sampled dynamics...**
- **...with a discrete multivariate (D>2) model**
- **Spurious direct causalities can appear**
 - Even if no regions are missing
- **Having said this:**
 - Bi-variate (D=2) models are exempt
 - Causal direction is maintained
 - ‘Just’ a parametrization problem

\[
X[k\Delta t] = \exp(\Delta tA)X[(k-1)\Delta t] + e
\]

Sampling & Hemodynamics

Granger causality analysis

Roebroeck, NI 2005
Part 2: *Variable* Hemodynamics

- **Caution needed in applying and interpreting temporal precedence based causality**

- **Tools:**
 - Studying temporally integrated signals for slow processes (e.g. fatigue; Deshpande, HBM, 2009)
 - Finding experimental modulation of causality (intervention!)
 - Combining fMRI with EEG or MEG
 - Hemodynamic deconvolution by inverting generative models
Dynamic Causal Modeling (DCM)

Input (u) controlled

Neurodynamics
\[u \rightarrow z \]
\[\dot{z} = (A + \sum_j u_j B^j)z + Cu \]

Hemodynamics
\[z \rightarrow y \]

Output (y)
Observed + noise

Simulation

Model inversion

Friston et al., NI (2003)
Hemodynamic deconvolution

Much of DCM for fMRI is concerned with statistical inversion of the complex hemodynamic model.
Application: epilepsy

- An animal study of neural drivers in epilepsy
 - 6 rats
 - Simultaneous EEG and fMRI
 - Intracranial iEEG in 3 areas

David et al., PLoS Biology, 2008
Application: epilepsy

- Rat study of epilepsy
- Simultaneous fMRI/EEG
- Gold standard model =>

Granger without deconvolution

\[\text{DCM} \]

\[\begin{align*}
\text{S1BF} & \rightarrow \text{Thalamus} \\
\text{Thalamus} & \rightarrow \text{S1BF} \\
\text{S1BF} & \rightarrow \text{Striatum} \\
\text{Striatum} & \rightarrow \text{S1BF} \\
\end{align*} \]

Granger using deconvolution

David et al., PLoS Biology, 2008
Missing time: solutions

• **Part 1**
 – Bi-variate discrete-time modeling (GCM)
 – Parametrizing the model for missing time (continuous-time models)

• **Part 2**
 – Deconvolution by inverting a generative model of hemodynamics (DCM)
 – Experimental modulation of interactions
 – Independent data (e.g. EEG/MEG)
Overview

• Intro: What is…
 – Brain Connectivity
 – Causality

• Problems, solutions, applications
 – The missing region problem
 – Solution: structural model exploration
 – Application: Task switching
 – The missing time problem
 – Solution: generative model inversion
 – Application: Epileptic seizures
 – The missing model problem
 – Solution: Don’t throw away the less-parametric models
 – Application: Social communication

• Summary & Conclusions
Missing model problem

• We do not have an appropriate generative model for many interacting processes
 – Or, when we do, we cannot invert it: it is not identifiable
Neurodynamics model

- **Neurodynamics model**
 - Which one is realistic enough and identifiable?
 - 1-state, 2-state, 3-state,…

- **Hemodynamics model**
 - Observation model for fMRI
 - Other ones for EEG/MEG
Application: Social communication

Mapping the information flow from one brain to another during gestural communication

Marleen B. Schippers¹, Alard Roebroeck², Remco Renken³, Luca Nanetti⁴, and Christian Keysers⁵,⁶

¹Social Brain Laboratory, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AW, Groningen, The Netherlands; ²Department of Cognitive Neuroscience, Faculty of Psychology, University of Maastricht, 6229 ER, Maastricht, The Netherlands; and ³Social Brain Laboratory, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, The Netherlands

Schippers et al, PNAS, 2010
• Hard to specify a generative model for the full causal chain between brains
• Less-parametric G-causality can still be applied
Application: Social communication

- Mapping influence between brains

Schippers et al, PNAS, 2010
Application: Social communication

- Mapping influence between brains

Schippers et al, PNAS, 2010
Missing models: solutions

- Find and use more realistic (& complex) neurodynamics models and the data to identify them from
- But don’t throw out less-parametric models that can capture largely unknown mechanisms…
Summary & Conclusion

- **Causality in fMRI: Yes!**
 - Intervention: task design
 - Temporal precedence: signal dynamics
 - Good stochastic dynamic models use **both**

- **Missing regions**
 - Structural model exploration ✓

- **Missing time**
 - Bi-variate mapping
 - Inversion of hemodynamic models ✓

- **Missing models**
 - Think about more parametric…
 - …and less-parametric neuronal models ✓
Thanks for collaboration & discussion

• Maastricht
 – Rainer Goebel
 – Elia Formisano
 – Martin Havlicek

• Havanna
 – Pedro Valdes-Sosa

• London, FIL
 – Karl Friston
 – Jean Daunizeau

• Groningen / Amsterdam
 – Christian Keysers
 – Marleen Schippers

• Brighton
 – Anil Seth

• Grenoble
 – Olivier David

• Oxford
 – Steve Smith