Techniques to Estimate Brain Connectivity from Measurements with Low Spatial Resolution

- 1. What is coherence?
- 2. The problem of volume conduction
- 3. Recent developments

G. Nolte

Dept. of Neurophysiology and Pathophysiology UKE, Hamburg

EEG sensor configuration

EEG sensor configuration

Filtered data in two channels for various trials

Filtered Data vs. Model

Coherence:
$$C = \frac{\frac{1}{K} \sum_{k} r_{1k} r_{2k} \exp(i(\Phi_{1k} - \Phi_{2k}))}{\left(\frac{1}{K} \sum_{k} r_{1k}^{2} \frac{1}{K} \sum_{k} r_{2k}^{2}\right)^{1/2}} = \frac{\langle z_{1} z_{2}^{*} \rangle}{\sqrt{\langle |z_{1}|^{2} \rangle} \sqrt{\langle |z_{2}|^{2} \rangle}}$$

2. The problem of volume conduction:

Rest Coherence

The Problem of volume conduction

EEG-simulation of ERD (two sources)

Rest: Real background + simulated dipoles Task: Real background

Fake!! Sources were indepent!!

EEG-simulation of ERD (1 source)

Rest: Real background + simulated dipole Task: Real background

Inverse using beamformer (DICS) on cortex

Simulated dipole

Estimated power ratio: Task/Rest

Coh., difference

The role of the imaginary part of coherency

Observation:

Independent sources do not contribute to the imaginary part of the cross-spectrum

10

1 (non-interacting) source

Many sources

Independent sources do not contribute to the imaginary part of the cross-spectrum

$S_{12}(f) = \operatorname{Re}(S_{12}(f)) + i\operatorname{Im}(S_{12}(f))$

$$S = L \begin{pmatrix} P_{1} & 0 & \cdots & 0 \\ 0 & P_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_{M} \end{pmatrix} L^{T}$$

Real part of coherency = correlation at given frequency

Imaginary part of coherency

Selfpaced movement, C3-C4 relationships

Observations:

- coherence follows power
- imaginary part has onset
 5 secs before movement
- imaginary part not related to power

Imaginary coherency

Nolte, et.al., Clinic. Neurophys., 2004

-0.06 -0.08

Normal subjects, eyes closed, ImCoh

Schizophrenic patients, eyes closed, ImCoh

- Huge variability across subjects
- Schizophrenics more regular than controls??

Methods based on imaginary parts of cross-spectra

- Decomposition into subspaces ('PISA')
- Decomposition of source distributions ('MOCA')
- Causality ('PSI')

1. Surrogate Data

Preserve everything except quantity of interest

• Create data from *non-interacting* sources

• As close to actual data as possible

Here: Use Independent Component Analysis (ICA) to construct surrogate data

Shahbazi et. al., Biomag 2010

Surrogate Data to test for artefacts of volume conduction

Data
$$\vec{x}(t) = (x_1(t), ..., x_n(t))$$

1. Demix with ICA

$$\vec{s}(t) = W\vec{x}(t)$$

2. Delay i.th component by (i-1)*T $v_1(t) = s_1(t)$ $v_2(t) = s_2(t+T)$ $v_3(t) = s_3(t+2T)$:

3. Remix

$$\vec{\mathbf{x}}_{\rm surr}(t) = W^{-1}\vec{v}(t)$$

Cross-spectrum $S_{ij}(f) = \langle z_i(f) z_j^*(f) \rangle$ Coherence $C_{ij}(f) = \frac{S_{ij}(f)}{\left(S_{ii}(f) S_{ii}(f)\right)^{1/2}}$

Coherence at 10Hz

Surro, Real Part

Surro, Imag. Part

1:2 Phase Locking

 $PL_{ij}(f) = \left\langle \exp\left(i\left(2\Phi_i(f) - \Phi_j(2f)\right)\right)\right\rangle$

2. Source orientation (inverse here with eLORETA)

- **1.** Fixe source direction to maximize power
- 2. Calculate connectivity measure

Problems

- 1. Interacting sources don't have to be strong
- 2. Poor spatial resolution -> short range interactions like volume conduction -> long range bias

2. Source orientation (inverse here with eLORETA)

Fixed orientation

Maximal interaction

For each voxel pair: select orientation which maximizes imaginary coherence.

Ewald et. al., Neuroimage, 2012; Shahbazi et. al., Comput. and math. methods in medicine, 2012

Local Interactions: a voxel interacts with itself (rotating dipole)

Local Interactions: a voxel interacts with itself (rotating dipole)

Beta rhythm, resting state, MEG, normal subject

Fixed Dipole orientation

Variable Dipole orientation

Alpha rhythm, resting state, EEG, normal subject

Fixed Dipole orientation

Variable Dipole orientation

Alpha rhythm, resting state, EEG, normal subject Histograms for all connections (5000 x 5000)

Alpha rhythm, resting state, EEG, normal subject Histograms for all connections (5000 x 5000)

- Everything appears to be connected with everything
- Graph measures based on significance useless

Grand average, 19 Patients-18 Controls Variable orientation, mean interaction for each voxel

Grand average, 19 Patients-18 Controls Fixed orientation, mean interaction for each voxel

Grand average, 19 Patients-18 Controls Normalized power difference: (P1-P2)/(P1+P2)

3. Nonlinear measures robust to mixing artefacts

2nd order: Imaginary part of cross-spectrum: 3rd order: antisymmetric part of cross-bispectrum:

$$iS_{ij}^{anti}(f) = \left\langle z_i(f) z_j^*(f) \right\rangle - \left\langle z_j(f) z_i^*(f) \right\rangle$$

Nonlinear measure is complex valued and results are less rich across frequencies

Chella et. al., in preparation

$$B_{ij}^{anti}(f) = \left\langle z_i(f) z_i(f) z_j^*(2f) \right\rangle - \left\langle z_j(f) z_i(f) z_i^*(2f) \right\rangle$$

Antisymmetric parts of bispectra (real part), schizophrenics, eyes closed

Can one explain this with a model?

Remarks on nonlinear measures of interaction robust to artefacts of volume conduction

- 1. Observable but weak signals
- 2. Allows deeper insight into dynamics
- 3. Beyond third order???

Antisymmetrization of 4.th order moments? No! This is an open question.

Summary on new stuff

- 1. Surrogate Data control for artifacts of volume conduction
- 2. Choose source orientation according to interaction
- 3. Nonlinear Measures are interesting but weak

Biomag 2014, Halifax, Causality Challenge

- Given: 1000 simulated data sets, 3 channels, random dynamical systems + additive noise, Matlab code is available
- Task: Estimate all direct causal connections

Counting:

- +1 point for each correct detection
- -3 points for each false detection

Thanks to

Mark Hallett Ou Bai Lewis Wheaton

Tom Brismar

Laura Marzetti Federico Chella

Andreas Engel Till Schneider Arne Ewald Stefan Haufe Andreas Ziehe Vadim Nikulin Alois Schlögl Frank C. Meinecke Klaus-Robert Müller Forooz Shahbazi

Christina Andreou Nenad Polomac Christoph Mulert

Andreas Daffertshofer