(Brain) connectivity

A sort of introduction
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THE RISE OF fMRI

Use of fMRI has rocketed, and now more studies
are looking at connectivity between regions.
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fMRI, functional magnetic resonance imaging; PET, positron
emission tomography; SPECT, single-photon emission
computed tomography; EEG, electroencephalography;
MEG; magnetoencephalography
Data from I1S| Web of Knowledge.
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Key characteristic 1:
Networks as pathways




Key characteristic 2:
Networks as an expression of
collective dynamics



Adolphe Quetelet
(Gent,1796-1874)

When we consider a big
number of individuals, social
dynamics are ruled by
collective stimulations in the
network to which the
Individual belongs, rather than
the indvidual’s will.

Like molecules in a gas

l_ike neurons



Camillo Golgi
Nobel lecture, 1906

...far from being able to accept the idea of the
individuality and independence of each nerve
element, | have never had reason, up to now, to
give up the concept which | have always stressed,
that nerve cells, instead of working individually,
act together [...]

However opposed it may seem to the popular
tendency to individualize the elements, | cannot
abandon the idea of a unitary action of the
nervous system|...]




Networks: Basic definitions

1) A Network is a set of nodes connected by links (edges).

Node
Edge . P1)=1/4
P(2)=2/4
\ P(3)=1/4
k=2 Path

2) Degree (k) is the number of edges connected to a node

3) Degree Distribution P(k) is the fraction of nodes with degree k

4) Nodes can be linked directly by single edges or indirectly by
sequences of intermediate nodes and edges: paths.



Graph theory
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The brain as a network

Interplay of (structural) segregation and
(functional) integration.



Local segregation: clustering

Fraction of existing links between neighbors over all
possible links.

So, high clustering means connecting nodes that are well

connected.
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Local segregation: modularity
(many links within modules, few links
between modules)

High modularity
Low modularity

Newman & Girvan, PRE (2003)



Networks Motifs (Alon, 2003)

e Characteristic network building blocks

 Small connected subgraphs that occur
significantly more frequently than in
randomized networks

 Brain networks: small set of structural motifs,
large number of functional motifs
(Sporns,Bullmore)



ldentifying Network motifs

® Find n-node subgraphs in real graph.
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® Find all n-node subgraphs in a set of A
randomized graphs with the same . D‘
distribution of incoming and outgoing

arrows. (Newman, 2000, Sneppen, Malsov 2002)

® Assign Z-score for each subgraph.
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e Subgraphs with high Z-scores are denoted
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Structural motifs in the cortex across

species
.‘-"“; L/, I/,. u‘\ Brain Metwork ID Real Random
Human Cortex 13 MJA M/A

> u\' D [\;) Macaque Visual Cortex 9 410 121.55 (21.03) z=13.T9
P" [; I; D‘ Macaque Cortex 9 1833 22366 (34,99) z = 46,22

? 1 " . Cat Cortex g 1217 472.33 (52.85) z = 14.16
&' C. elegans 4 2999 1067.03 (121.52) z= 1598

13

6 3415 1164.31 (134.71) z = 16.79




Structural and functional motifs in the

cortex

Brain Network

M Suructural Motifs

Functional Mouifs

Real Random Lattice Real Random Lattice

Macaque Visual 2 190 243 (4) 191 (2) 432 380 (4) 431 (2)
Cortex 3 1,486 2,353 (51) 1,344 (40) 19,769 14,358 (325) 21,120 (308)

4 10487 18,076 (391) 8,688 (414) 1,843,308 1,013,131 (55,187) 2,259,970 (90,404)

5 62940 105,926 (2,059) 50,278 (2,863) 334,279477 121,572,738 (13,874,054) 513,004,042 (50,992,845)
Macaque Cortex 2 438 654 (7) 471 (7) 1,054 838 (7) 1,021 (7)

3 4,584 10,786 (227) 4,439 (143) 53,601 30,449 (648) 56,043 (871)

4 51,129 173,235 (4,635) 39,345 (2,346) 5,306,188 1,850,355 (87,743) 6,617,493 (272,110)
Cat Cortex 2 519 656 (7) 510 (5) 1,054 838 (7) 1,021 (7)

3 6,986 10,898 (160) 6,021 (122) 53,601 30,449 (648) 56,043 (871)

4 87673 149,791 (2,250) 65,527 (2,150) 5,306,188 1,850,355 (87,743) 6,617,493 (272,110)
C. elegans 2 1,718 1,922 (6) 1,700 (40) 2,230 2,026 (6) 2,248 (40)

3 31,070 41,707 (279) 23,376 (1,494) 70911 55,054 (363) 84,245 (4,200)

4 674,125 1,081,682 (11,105) 316,228 (36,200) 3,430,885 2,160,611 (34,800) 5,326,201 (578,900)

Numbers are actual values (for real matrices) and mean and standard deviation (in parentheses, for random and lattice matrices, n = 100).

DO 10.1371/journal pbio. 00203691001

Functional motifs >> structural motifs



Global integration: path length and
efficiency

- Path length: number of connections that needs to be
Al crossed to go from one node to another.
- c
\ This measure is intuitively simple but varies greatly with

size and density of graphs.

Efficiency: average of the inverse of the distances.



Segregation and integration place opposite demands on networks:

e Optimal clustering and modularity are inconsistent with high integration (little
cross-talk among highly segregated communities)

* Optimal efficiency or integration is only achieved in a fully connected network that
lacks any differentiation in its local processing

 The bridge between these two opposite requirements is made by heterogeneous
contributions by individual nodes and edges.



Influence and centrality: hubs

e The number of connections is not enough to
quantify the importance of a node

* Centrality: fraction of short path length
passing from a node.

Most connected
airports

Most central airports
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Node degree and strength in the brain
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Centrality and efficiency in the brain
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Network architectures:
order, disorder, hierarchy

The architectural features of a graph
reflect the processes by which the graph
was constructed or developed.



From regular to random

Regular Small-World Random
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Small world effect: Milgram (1967)

UNITED STATES OF AMERICA
POLITICAL-GEOGRAPHIC SUB-DIVISIONS

Will a message arrive from a random Nebraska location to a
clerk in Chicago, through hand-to hand passage?



As you might have understood, a lot of networks are small
world

Sometimes small-worldness can arise from non-
profound mechanisms: i.e. the simple effect of using a
(thresholded) correlation to obtain the links of a

network, makes this network a small-world one (Zalesky
et al. 2012, Hlinka et al. 2012)



What makes inter-community
crossing possible?

1.Weak, random ties
2.Hubs



Signature of hubs in degree
distribution

B C
8000
- 10
5 6000 || E_:
0
g | : 107
& 4000 | g
3 £ G
- o
S 2000/ | ¥ %
S TR "
0 50 100 150 "o :




Hierarchical vs symmetric networks

Hierarchical network:
Homogeneous network hubs
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Self-similarity of scale free networks

P(k) ~ k~
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What is the mechanism originating scale-free
networks?
PREFERENTIAL ATTACHMENT
(Albert & Barabasi, 1999)

Matthew effect

For unto every one that hath
shall be given, and he shall
have abundance: but from
him that hath not shall be
taken even that which he
hath.

Matthew 25:29



Robustness wrt casual or targeted attacks

Targeted

Internet Protein
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Networks in the brain

Which connections exist in the brain?

s it possible that regions that are not connected by neural
fibers still communicate?

s it possible to detect the flow of information in the brain?
Which properties has this network of communications?

How does this network change during task performing vs rest,
or disease vs health?



Anatomic or structural connectivity
(at large scale)

DTI (humans)

A. Areas on M129 atlas

C. Areas on F99
inflated, flat maps

Dye tracing
(animals)



Functional (dynamical) connectivity

Find statistical dependencies between even remote regions:
e Correlation

e Coherence

* Phase synchronization

Mutual information



Functional vs structural

structural

c
functional

Connectivity
in the brain




Networks in the brain: structural and functional

el e

MRI or DTl anatomical f‘i S
data parcellation

Structural/Functional
Data

functional brain network

Graph depicts connections
between brain areas

Graph theoretical analysis

G) strgngth Si € path length L
|
® - . Measurements extracted
® ~ N from graph
o o




Cortical Region (Source)

Where are cortical maps?

macaque cortex
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SF-like networks
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FIG. 3 A zoo of complex networks. In this qualitative space, three relevant characteristics are included:
randomness, heterogeneity and modularity. The first introduces the amount of randomness involved in the
process of network’s building. The second measures how diverse is the link distribution and the third would
measure how modular is the architecture. The position of different examples are only a visual guide. The

domain of highly heterogeneous, random hierarchical networks appears much more occupied than others.
Scale-free like networks belong to this domain.

Solé and Valverde 2004



Small-world topology allows for lower
resource consumption

‘ Random Network |

| Human Cerebral Cortex — Right Hemisphere ‘
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Network

modality

Edge
representation

Empirical techniques

Network
characteristics

Structural
connectivity

Functional
connectivity

Effective
connectivity

Physical links
(synapses,
pathways),
biophysical
efficacy, time delay

Statistical
relationships
between neural

time courses (e.g.
spikes, EEG, BOLD)

Causality inference
based on temporal
precedence or on
generative model

Microscopy: tissue volume
reconstruction
Neuroanatomy: tract tracing
Neuroimaging: diffusion
imaging/tractography

Neurophysiology: spike or LFP
correlations

EEG/MEG: correlation, sync,
coherence, phase locking
fMRI: BOLD cross-correlations,
partial correlations

Spikes, EEG/MEG, fMRI: time
series analysis (Granger
causality, Transfer entropy) or
model inference (dynamic
causal modeling)

Weighted or
unweighted, sparse
and directed
(synapses,
projections), sparse
and undirected
(diffusion MRI)

Full and weighted, or
sparse and weighted
(or unweighted)
after thresholding;
undirected

Full or sparse;
weighted or
unweighted; directed



From data to network

weighted directed networks

structural datasets: tract tracing weighted undirected networks
effective datasets: inference of causality structural datasets: diffusion MRI, structural MR
from functional data functional datasets: functional MRI, MEG, EEG
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From data to network

A Anatomical connectivity (binary directed network) B Functional connectivity C Effective connectivity
(weighted undirected network) (weighted directed network)
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Model dynamics on brain structure

DTI/ Tractography i Simulated
Brain’s Network Model Neural Activity
BOLD
Model Simulated BOLD

signal

Simulated Resting FC of BOLD Signals
Vs.
Empirical Resting FC of BOLD Signals

cortical area

cortical area

FC model FC empirical
[ —
Dynamical Model of Local " 0 °e
Brain area Fiting
_ 0.; . .,
wa Structural o) S
Neuroanatomical link ; oo B
0

Deco, Jirsa, McIntosh, Nat Rev Neurosci 2011
Deco, Jirsa J. Neurosci. 2012 0 02040608 1
FC model

Deco, Jirsa, McIntosh, Trends in Neuroscience 2013



Network inference from temporally
correlated data

Correlations
Coherence

[@]J Phase synchronization

\ Generalized
synchronization

Mutual information
Transfer entropy
Granger causality




Predicting the future of a time series

Using only its past...

@%MWWWWMWMWWWMM x = AX + &4

... or including the past of another time series

e

A

Exy < & — Y Granger-causes X



Granger causality and Transfer Entropy

GC and TE are equivalent for Gaussianly distributed variables and
other quasi-Gaussian distribution (Barnett et al. 2009, Hlavackova
2011, Barnett and Bossomaier 2012)

In this case they both measure information transfer

e Unified approach
e Mathematically more treatable
* You make heavy assumptions and you could lose important features

Establishment of a general framework for GC and TE,
which computations that can be both exact and
approximate



Advances for (fMRI) connectivity

 Many variables, few samples

 Confounding HRF effect
N

 Bad temporal resolution



GC in multivariate datasets

We must condition GC to the presence of other variables

Yoox v x
N/ /
2 k2

This problem has been known from the start, and the solution is
usually the conditioned approach (Geweke 1982)



Full conditioning in multivariate dataset

We compare the model including ...

N

- ; Target

Variable to condition on



Full conditioning in multivariate dataset

... and excluding the conditioning variable

- ) Target

Variable to condition on



Presence of redundancy

When a number of variables share the same info on
the target ...

EEEEEEEECEE

- ; Target

Variable to condition on



Presence of redundancy

... iIn the model we still have info on the target

EEEEENEECEE

- ; Target

Variable to condition on

and the conditioning variable and all those
correlated with it will be regarded as not relevant



Partially conditioned Granger causality

e Redundancy in multivariate datasets leads to false GC estimations
e Conditioning on the most informative variables for each candidate
driver

Most informative regions consistently

Residual information gain distributed across the brain
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Marinazzo et al, Computational and mathematical methods in medicine, 2012
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From regional to voxel level

The modular structure of brain networks can as a prior for further dimensionality reduction

Reconstruction of voxel-wise directed networks: hubs for outgoing and incoming information

Wu et al. PLOS One 2013



Connectivity density
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Connectome at voxel level




The importance of deconvolution

Alard Roebroeck’s talk today,
discussion on David et al. 2008

Anderson et al. PLOS One, 2013



Point processes in BOLD signal
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Map HRF parameters across the brain

Time to Peak

Response Height

&

Peak events in BOLD time
series can be considered as
neural pseudoevents.

Delay from event to BOLD peak
by error minimization

HRF reconstructed as
canonical, FIR, or rbeta

Wu et al. Medical Image Analysis 2013



The importance of deconvolution

http://figshare.com/articles/HRF_parameter/886139
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HRF shape as a marker of brain function

Eyes closed, then open, then closed again

246 810121416182022 24262530
Timel(s)



HRF shape as a marker of brain function

Propofol anesthesia
Wake -> Mild sedation -> Deep sedation -> Recovery of consciousness




HRF shape and GCD
in left handers vs right handers

2




Connectivity from point processes

Probability of an event in the target region after an event in the driver
region

Nucleus accumbens-pain matrix: correlation in controls, lagged influence in chronic back pain

Controls Fatients
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Tools

GCCNT Toolbox (Wu)
BCT Toolbox (Rubinov and Sporns)
GAT Toolbox (Hosseini)

Brainnetviewer (Xia)



The C-word curse

“Every decade or so, a grandiose theory comes along, bearing similar aspirations and
often brandishing an ominous-sounding C-name. In the 1960 it was cybernetics. In
the '70s it was catastrophe theory. Then came chaos theory in the '80s and
complexity theory in the '90s.”

Steven Strogatz, Sync

e Correlation
e Causality
* Connectivity



