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Plan of Presentation 

(1) Motivating Example: Variants on 15q25 associated with 
smoking and lung cancer 

(2) Unmeasured confounding and sensitivity analysis 

(3) Measurement error and sensitivity analysis 

(4) Genetics example revisited 

(5) How important is sensitivity analysis?  



Genetic variants on 15q25.1 
In 2008, three GWAS studies (Thorgeirsson et al., 2008; Hung et al., 
2008; Amos et al., 2008) identified variants on chromosome 15q25.1 
that were associated with increased risk of lung cancer 

These variants had also been shown to be associated with smoking 
behavior (average cigarettes per day) e.g. through nicotine dependence 
(Saccone et al., 2007; Spitz et al., 2008)   

However, there was debate as to whether the effect on lung is direct or 
operates through pathways related to smoking behavior (Chanock and 
Hunter, 2008) 

Of the three studies that initially reported the association between the 
variants and lung cancer, two suggested that the association was direct 
(Hung et al.; Amos et al.) and one that it was perhaps primarily through 
nicotine dependence (Thorgeirsson et al.) 

It was also suggested that there may be gene-environment interaction 
(Thorgeirsson et al., 2008; Thorgeirsson and Stefanson, 2010; Le 
Marchand, 2008)   



Study Population 

The study population of 1836 cases and 1452 controls is from a case control study 
of lung cancer at Massachusetts General Hospital (cf. Miller et al., 2002)  

Sample characteristics of cases and controls 
_________________________________________________________________ 
     Cases (N=1836) Controls (N=1452) 
_________________________________________________________________ 
Average Cigarettes per Day  25.42   13.97 
Smoking Duration     38.50   18.93 
Age           64.86   58.58 
College Education    31.3%   33.5% 
Sex Male    50.1%   56.1% 
 Female    49.9%   43.9% 
rs8034191 C alleles 
 0    33.8%   43.3% 
  1    48.5%   43.7% 
  2    17.7%   13.0% 



Associations of genetic variants with 
lung cancer 

  

Associations between rs8034191 C alleles and lung cancer 
adjusted for smoking intensity, duration age, sex, and education 
gave: 

OR = 1.35 (1.21, 1.52)  P =3×10-7 
  

Similar to prior studies (Thorgeirsson et al., 2008; Hung et al., 
2008; Amos et al., 2008) 



Associations of genetic variants with 
cigarettes per day 

  

Associations between rs8034191 C alleles and cigarettes per day 
among smokers adjusting for smoking intensity, duration, age, sex 
and education gave: 

Cigarettes / day = 1.25  (0.00, 2.49)      P=0.05 

Again similar to other studies 

  
  



Questions of Mediation 
Is the effect on lung cancer of genetic variants on 15q25.1 
mediated by nicotine dependence or is there a direct effect of the 
genetic variant on lung cancer? 

We could attempt to address this question using ideas of natural 
direct and indirect effects from the causal inference literature 
(Robins and Greenland, 1992; Pearl, 2001) and methods that 
allow for case-control study designs (VanderWeele and 
Vansteelandt, 2010)   

A  M Y 



Definitions 
Let Y denote some outcome of interest for each individual 

Let A denote some exposure or treatment of interest for 
each individual 

Let M denote some post-treatment intermediate(s) for each  
individual (potentially on the pathway between A and Y) 

Let C denote a set of covariates for each individual 

Let Ya be the counterfactual outcome (or potential outcome) 
Y for each individual when intervening to set A to a 

Let Yam be the counterfactual outcome Y for each individual 
when intervening to set A to a and M to m 

Let Ma be the counterfactual outcome M for each individual 
when intervening to set A to a 



Definitions  
Robins and Greenland (1992) and Pearl (2001) proposed the 
following counterfactual definitions for direct and indirect effects: 

Controlled direct effect: The controlled direct effect 
comparing treatment level A=1 to A=0 intervening to fix M=m 

 CDE(m) =   Y1m – Y0m  

Natural direct effect: The natural direct effect comparing 
treatment level A=1 to A=0 intervening to fix M=M0 

 NDE =    Y1Mo – Y0Mo 

Natural indirect effect: The natural indirect effect comparing 
the effects of M=M1 versus M=M0  intervening to fix A=1 
 NIE =    Y1M1  – Y 1M0 

Total Effect = Y1 – Y0 = (Y1M1  – Y 1M0) + (Y1Mo – Y0Mo)    



Odds Ratios for Mediation Analysis  
For a binary outcome, one could likewise define similar effects on 
the odds ratio scale (VanderWeele and Vansteelandt, 2010) 

Controlled direct effect: The controlled direct effect comparing 
treatment level A=1 to A=0 setting M=m 

 CDEOR(m|c) =    P(Y1m =1|c) / P(Y1m =0|c)   
      P(Y0m=1|c) / P(Y0m =0|c) 

Note that this effect is conditional on C=c not marginalized over it; 
this will more easily allow us to estimate these effects with 
regressions 

We can give similar definitions for NDE and NIE odds ratios 

On the odds ratio scale we have:  TE = NDE x NIE 



Identification of Direct and Indirect 
Effects 

To estimate natural direct and indirect effects we need (on an NPSEM): 
(1) There are no unmeasured exposure-outcome confounders given C 
(2) There are no unmeasured mediator-outcome confounders given C 
(3) There are no unmeasured exposure-mediator confounders given C 
(4) The mediator-outcome confounders are not affected by exposure 

For controlled direct effects, 
only assumptions (1) and (2) 
are needed 

Note (1) and (3) are guaranteed  
when treatment is randomized 

Standard methods make similar assumptions 

Formally,  (1) is Yam  | |  A | C                   (2) is   Yam  | |  M | C,A 
  (3) is Ma  | |  A | C                    (4) is   Yam  | |  Ma* | C 

A  M Y C1 

 C3  C2 



Mediator-Outcome Confounding 
The importance of controlling for mediator-outcome confounders when 
examining direct and indirect effects was also pointed out early on in the 
psychology literature on mediation (Judd and Kenny, 1981) 

However a later paper in the psychology literature (Baron and Kenny, 1986) 
came to be the canonical reference for mediation analysis in the social 
sciences ( >35,000 citations on Google Scholar) 

Unfortunately, the Baron and Kenny (1986) paper did not note that control 
needed to be made for mediator-outcome confounders in the estimation of 
direct and indirect effects, though the point had been made five years earlier 

As a result the point has been ignored by much of the research on 
mediation in the social sciences; many of these analyses are thus likely 
biased (possibly severely) 

Contrary to claims sometimes made in the literature, mediator-outcome 
confounding is an issue even in randomized trials!   

12 



Regression for Causal Mediation 
Analysis 

We use regressions that accommodate exposure-mediator interaction: 
E[Y|A=a,M=m,C=c] = θ0 + θ1a + θ2m + θ3am  + θ4’c 
E[M|A=a,C=c] = β0 + β1a + β2’c 

Under assumptions (1)-(4), we can combine the estimates from the two 
models to get the following formulas for direct and indirect effects, comparing 
exposure levels a and a* (VanderWeele and Vansteelandt, 2009): 

CDE(a,a*;m) = (θ1+θ3m)(a-a*)  
NDE(a,a*;a*) = (θ1+θ3(β0+β1a*+β2’E[C]))(a-a*)  
NIE(a,a*;a) = (θ2β1+θ3β1a)(a-a*) 

Standard errors can be obtained via the delta method or bootstraping; SAS 
and SPSS macros can do this automatically (Valeri and VanderWeele, 2013) 
and have been translated into Stata (Emsley et al., 2013) 

13 



Regression for Causal Mediation 
Analysis 

Note that if there is no interaction between the effects of the exposure and 
the mediator on the outcome so that θ3=0 then these expression reduce to: 

CDE(a,a*;m) = NDE(a,a*;a*) = θ1(a-a*)  
NIE(a,a*;a) = θ2β1(a-a*) 

which are the expressions often used for direct and indirect effects in the 
social science literature (Baron and Kenny, 1986) – the “product method” 

However, unlike the Baron and Kenny (1986) approach, this approach to 
direct and indirect effects using counterfactual definitions and estimates can 
be employed even in settings in which an interaction is present 

The expressions with interaction are somewhat more complicated but can 
be obtained in a relatively straightforward way using standard regressions   14 



Regression for Causal Mediation 
Analysis 

Consider the use of the following two regression models, allowing for 
interaction between the genetic variant and smoking 
logit[Y=1|A=a,M=m,C=c] = θ0 + θ1a + θ2m + θ3am  + θ4’c 
E[M|A=a,C=c] = β0 + β1a + β2’c 

Provided that the outcome is rare (or using log linear models/RR’s instead of a 
logistic model) and identification assumptions (1)-(4) hold, we can combine 
the estimates to get the following formulas for direct and indirect effects 
(VanderWeele and Vansteelandt, 2010): 

log{(CDE(m)} = (θ1 + θ3m)(a-a*)  
log{NDE} = (θ1+θ3(β0+β1a*+β2’c+θ2σ2))(a-a*) + 0.5θ3

2σ2(a2-a*2)  
log{NIE} = (θ2β1+θ3β1a)(a-a*) 
 where σ2 is the error variance in the regression for M 

The SAS/SPSS and Stata macros (Valeri and VanderWeele, 2013) can handle 
this; can also be used for dichotomous mediators and count outcomes 



Regression for Causal Mediation 
Analysis 

The approach just described would be applicable to cohort data 
A modification is needed for case-control data (VanderWeele and 

Vansteelandt, 2010) 
The outcome regression is logistic and thus consistently estimates the 

parameters that would be obtained in a cohort study (except the 
intercept which is not needed for the NDE or NIE): 

logit[Y=1|A=a,M=m,C=c] = θ0 + θ1a + θ2m + θ3am  + θ4’c 

The linear regression for the mediator cannot be applied directly to case-
control data; instead if we have the prevalence π of the outcome 

E[M|A=a,C=c] = β0 + β1a + β2’c 

we can obtain the estimates that we would have from a cohort study by 
weighting cases by π/p and controls by (1-π)/(1-p) where p is the 
proportion of cases in the study (e.g. 1836/3288) 

Alternatively, one can use a ‘controls only’ analysis for the mediator 



Why might this approach fail? 
Confounding 

To use this approach with the genetic variants we need to assume no 
unmeasured confounding for the (1) exposure-outcome, (2) mediator-
outcome, and (3) exposure-mediator relationships 

Assumptions (1) and (3) are probably plausible for the exposure (the 
genetic variant) subject to no population stratification (the analysis was 
restricted to Caucasians) 

*(2)* No confounding may be less plausible for the smoking – lung 
cancer association (e.g. SES / neighborhood) 
We consider sensitivity analysis later 

(4) Smoking duration may affect 
cigarettes/day and lung cancer and 
may affected by the variant (though not 
much evidence) and results are similar 
when duration is omitted  

A  M Y C 

 C  U 



Why might this approach fail? 
Measurement Error 

Cigarettes per day is self reported; it may be measured with error 

If we use measured M* rather than the true cigarettes per day M 
we may get bias… 

Is this bias always in one direction? How can we assess it? 

A  M Y 

 M* 



Sensitivity Analysis and 
Confounding 

(1)  Sensitivity analysis for controlled direct effects 
 - Risk Ratio / Odds Ratio Scale 
 - Additive Scale 
 - Hazard Difference or Hazard Ratio 

(2)  Sensitivity analysis for natural direct and indirect effects 
 - No exposure-mediator interaction 
 - Method involving the correlation of random errors 
 - Binary mediator, binary outcome 

(3) Sensitivity analysis for a mediator-outcome confounder affected by the 
 exposure 



Sensitivity Analysis for CDEs 
Suppose there is an unmeasured confounding of the mediator-outcome 
relationship (and/or exposure-outcome relationship) 

So that controlling for (C,U) would suffice to control for confounding but not 
C alone i.e. Yam  | |  A | (C,U)        and       Yam  | |  M | C,A 

Our estimates of the controlled direct effect are biased if we have not 
adjusted for this variable U 

A  M Y C 

 U 
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Sensitivity Analysis for CDEs 
Suppose we wish to fit estimate the controlled direct effect on a risk ratio 
scale (approximated by odds ratios for a rare outcome). If we fit a logistic 
regression adjusted only for C: 

logit[Y=1|A=a,M=m,C=c] = θ0 + θ1a + θ2m + θ3am  + θ4’c 

The “direct” effect of the exposure A controlling for M will be exp(θ1 + θ3m)    
i.e. CDEOR(m=0) = exp(θ1) 
 CDEOR(m=1) = exp(θ1 + θ3) 

Let B denote the ratio between (i) the estimate and (ii) what would have 
been obtained had we adjusted for U as well 

21 



Sensitivity Analysis for CDEs 
Suppose that U were binary and had a constant effect γ on Y across 
exposure groups on the risk ratio scale:   

Then it can be shown (VanderWeele, 2010) that the bias factor is equal to: 

Where π1m  and π0m are the prevalence U amongst with with (A=1,M=m) 
and (A=0,M=m) respectively 

We could then specify different values of γ, π1m  and π0m and divide our 
estimates and confidence intervals by the bias factor “B” to assess what 
estimates we would have obtained had we been able to adjust for U 

A similar approach can be used for settings in which the simplifying 
assumption of binary U with constant effect does not hold (VanderWeele, 
2010) but the formulas are not quite as straightforward 

22 



Sensitivity Analysis for CDEs 

A similar approach also works for CDEs on the difference scale 

Let Bias(CDE) denote the difference between estimated CDE conditional on 
C and the true controlled direct effect conditional on C (what would have 
been obtained had we been able to adjust for U as well) 

General non-parametric expressions for the Bias term for the CDE are 
available (VanderWeele, 2010) 

We’ll again consider a simplified approach 

23 



Sensitivity Analysis for CDEs 
Result (VanderWeele, 2010): Suppose that no-confounding assumptions (1) 

and (2) hold for (C,U) where U is binary i.e. Yam  | |  A | (C,U)  and        
Yam  | |  M | (C,U,A) then if the effect of U on Y is constant over a, and if 
we let 

Then:  

We can use the bias formula by specifying:  
(i)  γ = the risk ratio relating U and Y, conditional on A,M,C  
(ii)  the prevalence difference of U for the exposed vs. unexposed 

Note these parameters may be different for different m 
Note that the prevalence difference is conditional on M=m 

24 



Sensitivity Analysis for CDEs 

Once we have calculated the bias term Bias(CDE) we can simply 
obtain our estimate of the CDE controlling only for C (e.g. fit a 
regression of Y on A,M,C) and we subtract Bias(CDE) from our 
regression estimate to get the corrected estimate for the controlled 
direct effect i.e. what we would have obtained if we had adjusted for 
U also 

For conditional controlled direct effects, we can obtain corrected 
confidence intervals by subtracting Bias(CDE) from both limits of the 
confidence interval 

Both the bias formulae for the ratio scale and the difference scale 
apply also to the hazard ratio scale (VanderWeele, 2011) and the 
hazard difference (Lange and Hansen, 2011) scales, provided the 
outcome is rare, by replacing, γ, the risk ratio or outcome difference 
for the effect of U on Y by the hazard ratio or hazard difference for 
the effect of U on Y (VanderWeele, 2013)  25 



Sensitivity Analysis for Natural Direct 
and Indirect Effects 

We will now consider natural direct and indirect effects in a setting in which 
there is an unmeasured confounder that may affect the mediator and the 
outcome (settings where U affects A, M and Y are still in progress) 

The relationships between C and U may be arbitrary 

We assume that no-unmeasured-confounding assumptions (1)-(4) hold 
conditional on (C,U) but not conditional on C alone    

A  M Y C 

 U 
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Sensitivity Analysis for Natural Direct 
and Indirect Effects 

Very general non-parametric sensitivity analysis techniques for natural direct 
and indirect effects that can be applied to any statistical estimation method  
are available (VanderWeele, 2010) 

However these require specifying a large number of sensitivity analysis 
techniques and are not easy to use in practice 

There is still need for easier-to-use approaches 

1)  If there is no exposure-mediator interaction we could use the CDE 
techniques 

 If there is no exposure-mediator interaction then NDE’s equal CDE’s 
 We could subtract our CDE bias formula             from the NDE 
  and its confidence interval 
 We could add this bias factor        to the NIE and its CI   
  

27 



Sensitivity Analysis for Natural Direct 
and Indirect Effects 

2) Imai et al. (2010) give an approach for natural direct and indirect effects 
that is fairly easy to implement using an R program; it is possibly the most 
useful approach in the presence of interaction but the interpretation of the 
sensitivity analysis parameters is not as intuitive and is restricted to 
unmeasured variables that affect only the mediator and the outcome  

28 



Binary Outcome, Binary Mediator 
3) We will consider one easier-to-use approach that can be applied when 
both the mediator and the outcome are binary 

Suppose we had a binary outcome and binary mediator: 
logit[P(Y=1|A=a,M=m,C=c)] = θ0 + θ1a + θ2m + θ3am  + θ4’c 
logit[P(M=1|A=a,C=c)] = β0 + β1a + β2’c 

If controlling for C alone sufficed to control for confounding i.e. suffice to 
satisfy assumptions (1)-(4) then we would have (Valeri and VanderWeele, 
2013): 

29 



Binary Outcome, Binary Mediator 

Suppose now that there were an unmeasured binary confounding variable U 
for the mediator-outcome relationships where we specify (i) the risk ratio  γ 
relating U and Y for both strata of A and (ii) the prevalence of U in each 
exposure-mediator stratum, P(U|A=a,M=m,c) so that: 

From (i) and (ii) we can calculate B0, B1 and B2 
30 



Binary Outcome, Binary Mediator 

If we let  

And we replace (θ1,θ2,θ3) by (θ†
1,θ†

2,θ†
3) in the original formulas: 

This will give us the corrected natural direct and indirect had we been able 
to adjust for U as well 

31 



Binary Outcome, Binary Mediator 

We can assess the sensitivity of the conclusions to unmeasured 
confounding by varying: 
(i) γ, the risk ratio relating U and Y and 
(ii) the prevalence of U in each treatment-mediator stratum to get: 

And then (θ†
1,θ†

2,θ†
3) and the corrected effect estimates   

Standard errors can be calculated using the delta method and the relations 
between the estimated and adjusted coefficients 32 



Mediator-Outcome Confounder 
Affected by Exposure 

To estimate natural direct and indirect effects we need assumption 4 that 
there is no effect of exposure that confounds the mediator-outcome 
relationship; this would be violated in the following causal diagram: 

One possibility may be to attempt to use sensitivity analysis techniques 
which would allow for inferring a range of possible values for the natural 
indirect effect under reasonable assumptions 

A  M Y C 
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Current work consider sensitivity analysis when data is available on 
the exposure-induced mediator-outcome confounder L (e.g. 
Vansteelandt and VanderWeele, 2012; Imai and Yamamoto, 2013) 

Other work considers sensitivity analysis when data is not available 
available on the exposure-induced mediator-outcome confounder L 
(Tchetgen Tchetgen and Shpitser, 2012; VanderWeele and Chiba 
2013) 

Generally the latter are easier to implement in practice but the former 
are probably more reliable 

If there is no “three-way interaction” (in different technical senses cf. 
Vansteelandt and VanderWeele, 2012; Imai and Yamamoto, 2013) 
then the effects are identified with data on L   

Mediator-Outcome Confounder 
Affected by Exposure 

34 



Sensitivity analysis does not give one right answer but a range 
It is sometimes objected that there is too much subjectivity in using 
 sensitivity analysis 

Possible Approaches: 
(1) Create a table with many values of all sensitivity analysis 

 parameters; include those one thinks are too extreme; 
 let the reader decide 

(2) Find the most important measured confounder variable; examine  
 if an unmeasured confounder of similar strength would 
 change conclusions 
(3) Report how large the effects of the confounder would have to be  
 to completely explain away the effect 
(4) Use external data or expert opinion to inform sensitivity analysis  
 parameters 

Approaches to Sensitivity Analysis 

35 



Measurement Error 
Suppose M is measured with non-differential error: M* = M + ε 
We fit the models: 

logit[Y=1|A=a,M*=m*,C=c] = θ0 + θ1a + θ2m* + θ3am*  + θ4’c 
E[M*|A=a,C=c] = β0 + β1a + β2’c 

The model for M* will give unbiased estimates for the model for coefficients 
for the model for M 

The coefficients in the model for Y will biased when we use M* instead of 
M; we can obtain corrected estimates for the model for Y using methods of 
moments, regression calibration, or SIMEX (Valeri, Lin and VanderWeele, 
2012) and corrected NIE and NDE estimates and s.e.’s once we specify: 

λ = Var(M|A,C) / Var(M*|A,C) 

which we could vary in a sensitivity analysis   36 



Measurement Error 
An especially easy case follows when there is no exposure mediator 
interaction: 

logit[Y=1|A=a,M*=m*,C=c] = θ0 + θ1a + θ2m* + θ4’c 
E[M*|A=a,C=c] = β0 + β1a + β2’c 

If we specify the proportion of the variance in M* explained by M: 

λ = Var(M|A,C) / Var(M*|A,C) 

we have that the true coefficients expressed in terms of the mismeasured 
(denote with the tilda “~”) are (Carroll et al., 2006; le Cessie et al., 2012):  

37 



Measurement Error 

We can then use our specification of λ and our estimates of the coefficient 
from the mismeasured mediator to get corrected coefficients and use those 
for our estimate of direct and indirect effects (le Cessie et al., 2012; 
VanderWeele et al., 2012) 

We could vary λ in a sensitivity analysis 

This approach also works with a continuous outcome 

Standard errors can be estimated by bootstrapping 

38 



Measurement Error 
Methods have also been developed for other more complex forms of 
measurement error including: 

(1) Cases with exposure-mediator interaction (Valeri, Lin, and 
VanderWeele, 2012) 

(2) Binary mediators (Valeri and VanderWeele, 2012) 

(3) Differential measurement error with the exposure or 
outcome affecting the mediator measurement, differential 
or non-differential intra individual variation over time, and 
various trigger mechanisms (le Cessie et al., 2012) 

Some of these techniques are more difficult to implement or 
require more specialized software 39 



Measurement Error 
Intuitively we would expect the NIE to be biased towards the null and the 
NDE to be biased away from the null 

When will this hold? 

Assume NIE and NDE are in the same directions 
Assume we have non-differential measurement error for M  

We will have the intuitive conclusion (NIE toward null, NDE away) if: 
(1)  M is binary (Ogburn and VanderWeele, 2012)  
(2)  M is normally distributed and continuous but there is no interaction 

between M and A in either a linear or logistic model (VanderWeele et 
al., 2012) 

Otherwise (e.g. if M has three or more levels; or M normal but there is AxM 
interaction) these intuitive results may not hold 

 However, we can still use sensitivity analysis (Valeri et al., 2012) 40 



Mediation Analysis for Genetic 
Variants on 15q25.1 

If we apply the methods to the genetics data, tests for interaction b/w 
genetic variants and smoking is significant for rs8034191 (P=0.001) 

Suppose we fit our models (ignoring unmeasured confounding and 
measurement error)  

Allowing for gene x smoking interaction gives the following: 

An increase of one rs8034191 C allele gives: 
NDE OR = 1.32 (95% CI: 1.17,1.49)  P=9×10-6  
NIE OR = 1.01 (95% CI: 0.99,1.03)  P=0.16 
with proportion mediated 5.4% 

It looks like most of the effect is through other pathways (i.e. not 
through cigarettes per day) 



Mediation Analysis for Genetic 
Variants on 15q25.1 

We would expect unmeasured confounding here to be ‘positive’ (e.g. 
neighborhood would likely affect smoking and lung cancer in the 
same direction) 

If so, NDE is biased downwards; NIE biased downwards 
This would strengthen the conclusion that most is direct (through 
other pathways) 
Our naïve NIE (already small) is an overestimate 

What about measurement error? 
Measurement error in cigarettes per day we might expect to bias the 
NIE downwards; the true NIE may be larger 

This would threaten our conclusion 



Mediation Analysis for Genetic 
Variants on 15q25.1 

We adjust the coefficients estimated in the outcome regression: 
logit[Y=1|A=a,M*=m*,C=c] = θ0 + θ1a + θ2m* + θ3am*  + θ4’c 

for possible measurement error using regression calibration.  The 
adjusted estimates can then be used to re-estimate direct and indirect 
effects.  

Allowing up to 50% error gives (one allele rs8034191 C increase) 
NDE OR = 1.27  NIE OR = 1.02  PM = 8.8%  

Allowing up to 75% error gives (one allele rs8034191 C increase) 
NDE OR = 1.33  NIE OR = 1.04  PM = 15.2% 

Methods of moments, regression calibration, and SIMEX gave very 
similar results for measurement error correction 



Mediation Analysis for Genetic 
Variants on 15q25.1 

There may be an indirect effect but it is quite small, even allowing substantial 
75% measurement error (1.04   95% CI: 0.99,1.11) 

Most of the effect seems through pathways other than cigarettes per day 

Results were further replicated in 3 other lung cancer case-control studies 
(MD Andersen, IARC, Toronto) and gave similar conclusions 

Results are quite robust to unmeasured confounding and measurement error 

The effect of the variants on lung cancer is NOT through cigarettes per day 

BUT… there is substantial interaction (likely no effect of the variants except in 
the presence of smoking; Li et al., 2010) 

The variant may make each cigarette more harmful (more nicotine and toxins 
per cigarette smoked; Le Marchand et al., 2008) but do not operate on lung 
cancer principally by increasing cigarettes per day 

May operate by deeper inhalation when smoking (current study at Bristol) 



How bad can it can get? 

We have seen several sensitivity analysis techniques for 
unmeasured confounding and measurement error 

However in our example from genetic epidemiology, our results 
seemed fairly robust to unmeasured confounding and to 
measurement error 

We might wonder whether this will generally be the case 

How important is sensitivity analysis? 

How biased can our results really be? 



Mediator-Outcome Confounding 
A number of studies (e.g. Yerushalmy, 1971; Wilcox, 1993; Hernandez-Diaz 
et al., 2006) have examined the effect of smoking A on infant mortality Y 
within strata of birthweight M 

Conceived of in another way, this is the direct effect of smoking on infant 
mortality controlling for the intermediate birthweight 

Studies have found that amongst those with the lowest birth weight, smoking 
appears to have a beneficial effect!!! e.g. in the US, the odds of infant 
mortality amongst infants <2000g is 0.79 lower for smoking mothers than 
non-smoking mothers! 

A  M Y C1 

 U 
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Mediator-Outcome Confounding 

These studies have not controlled for birth defects U which confounds 
the mediator-outcome relationship (Hernandez-Diaz et al, 2006) 

Essentially low birth weight might be due to smoking or due to birth 
defects; if we look at infants who have very low birth weight whose 
mothers do not smoke then the low birth weight is likely due to some 
other cause (e.g. a birth defect) that is much worse than smoking 

If we were able to control for birth defects also (e.g. compare smoking 
and non-smoking mothers within strata of the presence of birth defect 
we likely would not observe these paradoxical findings) 

A  M Y C1 

 U 

A=maternal smoking    
M=birth weight        
Y=infant mortality       
U=birth defect 
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Birthweight Paradox 
The approach can be used to resolve the birthweight paradox: 
The odds of infant mortality amongst infants <2000g is 0.79 lower for 
smoking mothers than non-smoking mothers 

If U denotes a common cause of low birthweight and infant mortality 
(e.g. birth defect / malnutrition) then… 

If the effect of U increases the risk of infant mortality 3.5 fold and  

If the prevalence of U for low-birth weight infants whose mothers 
smoke is 0.025 but the prevalence of U for low-birth weight infants 
whose mothers do not smoke is 0.14 (smoking is ruled out as an 
explanation of LBW rendering other causes more likely) then 

Bias(CDE) =  {1+(3.5 - 1)x0.025} / {1 + (3.5 - 1)x(0.14)} = 0.79 

And our corrected estimate would be 0.79/Bias(CDE) = 0.79/0.79=1 
and such confounding would completely explain away the 
birthweight paradox 48 



CBT Intervention 
SMaRT trial (Strong et al., 2008): a randomized cognitive behavioral 
therapy intervention  

Effect on depression symptoms after 3 months (SCL-20 depression) 

At 3 months was E[Y|A=1]-E[Y|A=0]=-0.34 (95% CI: -0.55, -0.13)   

Intervention also had an effect on the use of antidepressant  

Those in the CBT arm were more likely to use antidepressants 

Does the CBT intervention affect depressive symptoms simply 
because of higher antidepressant use, or other pathways? 

What happens when we regress outcome Y on treatment and 
mediator (anti-depressant use)…?  
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CBT Intervention 
The coefficient for antidepressant use is positive! 
It looks like antidepressant use increases depression! 
The mediated effect through antidepressant use looks detrimental! 
The “direct effect” looks larger than the total effect! 

What is going on here…?   Mediator-Outcome Confounding 
Those in more difficult situations both use an antidepressant and 
have higher levels of depressive symptoms 
When we ignore this confounding we get paradoxical results! 

Using a new sensitivity analysis techniques (Emsley and 
VanderWeele, 2013), data from several trials which randomize 
antidepressant use are used to inform sensitivity analysis 
parameters:  
Direct effect ranges from:    -.15 to -.28 
Mediated effect (through antidepressent): -.06 to -.19   50 



Conclusions 
(1)  New methodology for mediation analysis can help answer questions of 

pathways, but may be biased by confounding and measurement error 

(2)  Sensitivity analysis methods for confounding and measurement error 
can help assess the extent to which these biases may invalidate results 

(3)  A number of methods are now available but considerable work remains 
to be done in this area  

(4)  The application of these methods suggests most of the effect of the 
variants on 15q25 on lung cancer is not through increasing cigarettes 
per day; similar approaches could be used with other SNPs, exposures 
and outcomes 

(5)  Unmeasured confounding can lead to very biased estimates and 
paradoxical results and needs to be taken serious; sensitivity analysis 
can assist with this 
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