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Genetic variants on 15925.1

In 2008, three GWAS studies (Thorgeirsson et al., 2008; Hung et al.,
2008; Amos et al., 2008) identified variants on chromosome 15925.1
that were associated with increased risk of lung cancer

These variants had also been shown to be associated with smoking
behavior (average cigarettes per day) e.g. through nicotine dependence
(Saccone et al., 2007; Spitz et al., 2008)

However, there was debate as to whether the effect on lung is direct or
operates through pathways related to smoking behavior (Chanock and
Hunter, 2008)

Of the three studies that initially reported the association between the
variants and lung cancer, two suggested that the association was direct
(Hung et al.; Amos et al.) and one that it was perhaps primarily through
nicotine dependence (Thorgeirsson et al.)

It was also suggested that there may be gene-environment interaction
(Thorgeirsson et al., 2008; Thorgeirsson and Stefanson, 2010; Le
Marchand, 2008)




Study Population

The study population of 1836 cases and 1452 controls is from a case control study
of lung cancer at Massachusetts General Hospital (cf. Miller et al., 2002)

Sample characteristics of cases and controls

Cases (N=1836) Controls (N=1452)

Average Cigarettes per Day 25.42 13.97

Smoking Duration 38.50 18.93

JAYe [ 64.86 58.58

College Education 31.3% 33.5%

Sex Male 50.1% 56.1%

Female 49.9% 43.9%
rs8034191 C alleles

33.8% 43.3%

48.5% 43.7%

17.7% 13.0%




Associations of genetic variants with
lung cancer

Associations between rs8034191 C alleles and lung cancer

adjusted for smoking intensity, duration age, sex, and education
gave:

OR = 1.35 (1.21, 1.52) P =3x10-7

Similar to prior studies (Thorgeirsson et al., 2008; Hung et al.,
2008; Amos et al., 2008)




Associations of genetic variants with
cigarettes per day

Associations between rs8034191 C alleles and cigarettes per day

among smokers adjusting for smoking intensity, duration, age, sex
and education gave:

Cigarettes / day = 1.25 (0.00, 2.49) P=0.05

Again similar to other studies




Questions of Mediation

Is the effect on lung cancer of genetic variants on 15925.1
mediated by nicotine dependence or is there a direct effect of the

genetic variant on lung cancer?

N

A > M Y

We could attempt to address this question using ideas of natural
direct and indirect effects from the causal inference literature
(Robins and Greenland, 1992; Pearl, 2001) and methods that
allow for case-control study designs (VanderWeele and
Vansteelandt, 2010)




Definitions

Let Y denote some outcome of interest for each individual

Let A denote some exposure or treatment of interest for
each individual

Let M denote some post-treatment intermediate(s) for each
individual (potentially on the pathway between A and Y)

Let C denote a set of covariates for each individual

Let Y, be the counterfactual outcome (or potential outcome)
Y for each individual when intervening to set Ato a

Let Y, be the counterfactual outcome Y for each individual
when intervening to set Atoaand Mto m

Let M, be the counterfactual outcome M for each individual
when intervening to set Ato a




Definitions

Robins and Greenland (1992) and Pearl (2001) proposed the
following counterfactual definitions for direct and indirect effects:

Controlled direct effect: The controlled direct effect
comparing treatment level A=1 to A=0 intervening to fix M=m

CDE(M) = Yy~ Yon

Natural direct effect: The natural direct effect comparing
treatment level A=1 to A=0 intervening to fix M=M,

NDE — Y1|V|0_Y0M0

Natural indirect effect: The natural indirect effect comparing
the effects of M=M, versus M=M,, intervening to fix A=1

Total Effect =Y, = Yo = (Yo =Y 1) + (Yo = You)




Odds Ratios for Mediation Analysis

For a binary outcome, one could likewise define similar effects on
the odds ratio scale (VanderWeele and Vansteelandt, 2010)

Controlled direct effect: The controlled direct effect comparing
treatment level A=1 to A=0 setting M=m

CDER(m[c) = P(Y,, =1lc) / P(Y,,, =0lc)
P(Yor=11C) / P(Yom =0[C)

Note that this effect is conditional on C=c not marginalized over it;
this will more easily allow us to estimate these effects with
regressions

We can give similar definitions for NDE and NIE odds ratios
On the odds ratio scale we have: TE = NDE x NIE




|dentification of Direct and Indirect
Effects

To estimate natural direct and indirect effects we need (on an NPSEM):
(1) There are no unmeasured exposure-outcome confounders given C
(2) There are no unmeasured mediator-outcome confounders given C

(3) There are no unmeasured exposure-mediator confounders given C
(

4) The mediator-outcome confounders are not affected by exposure

For controlled direct effects,
only assumptions (1) and (2)
are needed

Note (1) and (3) are guaranteed
when treatment is randomized

Standard methods make similar assumptions

Formally, (1)isY,, Ll A|C (2)is Y, Ll M|CA
(3)isM, || A|C (4)is Y, Ll M, | C




Mediator-Outcome Confounding

The importance of controlling for mediator-outcome confounders when
examining direct and indirect effects was also pointed out early on in the
psychology literature on mediation (Judd and Kenny, 1981)

However a later paper in the psychology literature (Baron and Kenny, 1986)
came to be the canonical reference for mediation analysis in the social
sciences ( >35,000 citations on Google Scholar)

Unfortunately, the Baron and Kenny (1986) paper did not note that control
needed to be made for mediator-outcome confounders in the estimation of
direct and indirect effects, though the point had been made five years earlier

As a result the point has been ignored by much of the research on
mediation in the social sciences; many of these analyses are thus likely
biased (possibly severely)

Contrary to claims sometimes made in the literature, mediator-outcome

confounding is an issue even in randomized trials! "




Regression for Causal Mediation
Analysis

We use regressions that accommodate exposure-mediator interaction:
E[Y|A=a,M=m,C=c] =6, +8,a+06,m+ 6;am +9,c
E[M|A=a,C=c] =B, + Ba + 3,'C

Under assumptions (1)-(4), we can combine the estimates from the two
models to get the following formulas for direct and indirect effects, comparing
exposure levels a and a* (VanderWeele and Vansteelandt, 2009):

CDE(a,a*;m) = (8,+6;m)(a-a*)
NDE(a,aa”) = (8,+0;(B,+B4a"+B,'E[C]))(a-a%)
NIE(a,a™a) = (6,6,%85B,a)(a-a%)

Standard errors can be obtained via the delta method or bootstraping; SAS
and SPSS macros can do this automatically (Valeri and VanderWeele, 201%3)
and have been translated into Stata (Emsley et al., 2013)




Regression for Causal Mediation
Analysis

Note that if there is no interaction between the effects of the exposure and
the mediator on the outcome so that 8,=0 then these expression reduce to:

CDE(a,a*;m) = NDE(a,a*;a*) = 8,(a-a")
NIE(a,a*;a) = 8,8;(a-a*)

which are the expressions often used for direct and indirect effects in the
social science literature (Baron and Kenny, 1986) — the “product method”

However, unlike the Baron and Kenny (1986) approach, this approach to
direct and indirect effects using counterfactual definitions and estimates can
be employed even in settings in which an interaction is present

The expressions with interaction are somewhat more complicated but can
be obtained in a relatively straightforward way using standard regressioné4




Regression for Causal Mediation
Analysis

Consider the use of the following two regression models, allowing for
Interaction between the genetic variant and smoking

logit[Y=1|A=a,M=m,C=c] =8, +8,a+06,m + 6;am +86,c
E[M|A=a,C=c] =B, + Ba + B,'C

Provided that the outcome is rare (or using log linear models/RR’s instead of a
logistic model) and identification assumptions (1)-(4) hold, we can combine
the estimates to get the following formulas for direct and indirect effects
(VanderWeele and Vansteelandt, 2010):

log{(CDE(m)} = (8, + B;m)(a-a")
log{NDE} = (8,+85(B,+Ba"+B,'c+6,0%))(a-a") + 0.56;°0%(a*-a™)
log{NIE} = (8,8,+65B4a)(a-a")

where o2 is the error variance in the regression for M

The SAS/SPSS and Stata macros (Valeri and VanderWeele, 2013) can handle
this; can also be used for dichotomous mediators and count outcomes




Regression for Causal Mediation
Analysis

The approach just described would be applicable to cohort data

A modification is needed for case-control data (VanderWeele and
Vansteelandt, 2010)

The outcome regression is logistic and thus consistently estimates the
parameters that would be obtained in a cohort study (except the
intercept which is not needed for the NDE or NIE):

logit[Y=1|A=a,M=m,C=c] =8, +8,a+6,m + 6;am +86,c

The linear regression for the mediator cannot be applied directly to case-
control data; instead if we have the prevalence 1 of the outcome

E[M|A=a,C=c] = B, + Bsa *+ B,'c

we can obtain the estimates that we would have from a cohort study by
weighting cases by 11/p and controls by (1-11)/(1-p) where p is the
proportion of cases in the study (e.g. 1836/3288)

Alternatively, one can use a ‘controls only’ analysis for the mediator




Why might this approach fail?
Confounding

To use this approach with the genetic variants we need to assume no
unmeasured confounding for the (1) exposure-outcome, (2) mediator-
outcome, and (3) exposure-mediator relationships

Assumptions (1) and (3) are probably plausible for the exposure (the
genetic variant) subject to no population stratification (the analysis was
restricted to Caucasians)

*(2)* No confounding may be less plausible for the smoking — lung

cancer association (e.g. SES / neighborhood)
We consider sensitivity analysis later //\

(4) Smoking duration may affect C Y

" A g\
cigarettes/day and lung cancer and

may affected by the variant (though not \/ \/
much evidence) and results are similar C U
when duration is omitted




Why might this approach fail?
Measurement Error

Cigarettes per day is self reported; it may be measured with error

If we use measured M* rather than the true cigarettes per day M
we may get bias...

Is this bias always in one direction? How can we assess it?




Sensitivity Analysis and
Confounding

(1) Sensitivity analysis for controlled direct effects
- Risk Ratio / Odds Ratio Scale

- Additive Scale
- Hazard Difference or Hazard Ratio

(2) Sensitivity analysis for natural direct and indirect effects

- No exposure-mediator interaction
- Method involving the correlation of random errors
- Binary mediator, binary outcome

(3) Sensitivity analysis for a mediator-outcome confounder affected by the
exposure




Sensitivity Analysis for CDEs

Suppose there is an unmeasured confounding of the mediator-outcome
relationship (and/or exposure-outcome relationship)

[
>

|

So that controlling for (C,U) would suffice to control for confounding but not
Calonei.e.Y,, || A|(C,U) and Y.n LI M| CA

Our estimates of the controlled direct effect are biased if we have not
adjusted for this variable U




Sensitivity Analysis for CDEs

Suppose we wish to fit estimate the controlled direct effect on a risk ratio
scale (approximated by odds ratios for a rare outcome). If we fit a logistic
regression adjusted only for C:

logit[Y=1|A=a,M=m,C=c] =8, +8,a+6,m + 6;am +86,c
The “direct” effect of the exposure A controlling for M will be exp(6, + 6;m)
i.e. CDE®R(m=0) = exp(0,)

CDE®R(m=1) = exp(0, + 65)

Let B denote the ratio between (i) the estimate and (ii) what would have
been obtained had we adjusted for U as well

Bias cCDc.“

C




Sensitivity Analysis for CDEs

Suppose that U were binary and had a constant effect y on Y across
exposure groups on the risk ratio scale: PiYEEIRREI .
P(Y|am,ceU=0) !

Then it can be shown (VanderWeele, 2010) that the bias factor is equal to:

Where 11, and 1, are the prevalence U amongst with with (A=1,M=m)
and (A=0,M=m) respectively

We could then specify different values of y, 1, and 1, and divide our
estimates and confidence intervals by the bias factor “B” to assess what
estimates we would have obtained had we been able to adjust for U

A similar approach can be used for settings in which the simplifying
assumption of binary U with constant effect does not hold (VanderWeele,,
2010) but the formulas are not quite as straightforward




Sensitivity Analysis for CDEs

A similar approach also works for CDEs on the difference scale
Let Bias(CDE) denote the difference between estimated CDE conditional on

C and the true controlled direct effect conditional on C (what would have
been obtained had we been able to adjust for U as well)

degE(m|C) — {E[)'Ia m, C] T E[}!|a* , T, C‘} - E[}fam — }fa“m |C]

General non-parametric expressions for the Bias term for the CDE are
available (VanderWeele, 2010)

WEe'll again consider a simplified approach




Sensitivity Analysis for CDEs

Result (VanderWeele, 2010): Suppose that no-confounding assumptions (1)
and (2) hold for (C,U) where U is binary i.e. Y, || A|(C,U) and
Y.n LI M| (C,U,A) then if the effect of U on Y is constant over a, and if

we let ElYla,m,c,U=1]—-E[Y|a,m,c,U =0] =7~

Then: (u|a,m, c) — P(u|la*,m,c) =6

We can use the bias formula by specifying:
vy = the risk ratio relating U and Y, conditional on A,M,C
(||) the prevalence difference of U for the exposed vs. unexposed

Note these parameters may be different for different m
Note that the prevalence difference is conditional on M=m




Sensitivity Analysis for CDEs

Once we have calculated the bias term Bias(CDE) we can simply

obtain our estimate of the CDE controlling only for C (e.g. fit a

regression of Y on A,M,C) and we subtract Bias(CDE) from our

regression estimate to get the corrected estimate for the controlled

(ljJirGICt effect i.e. what we would have obtained if we had adjusted for
also

For conditional controlled direct effects, we can obtain corrected
confidence intervals by subtracting Bias(CDE) from both limits of the

confidence interval

Both the bias formulae for the ratio scale and the difference scale
apply also to the hazard ratio scale (VanderWeele, 2011) and the
hazard difference (Lange and Hansen, 2011) scales, provided the
outcome is rare, by replacing, y, the risk ratio or outcome difference
for the effect of U on Y by the hazard ratio or hazard difference for
the effect of U on Y (VanderWeele, 2013)




Sensitivity Analysis for Natural Direct
and Indirect Effects

We will now consider natural direct and indirect effects in a setting in which
there is an unmeasured confounder that may affect the mediator and the
outcome (settings where U affects A, M and Y are still in progress)

The relationships between C and U may be arbitrary

We assume that no-unmeasured-confounding assumptions (1)-(4) hold
conditional on (C,U) but not conditional on C alone




Sensitivity Analysis for Natural Direct
and Indirect Effects

Very general non-parametric sensitivity analysis techniques for natural direct
and indirect effects that can be applied to any statistical estimation method
are available (VanderWeele, 2010)

However these require specifying a large number of sensitivity analysis
techniques and are not easy to use in practice

There is still need for easier-to-use approaches

1) If there is no exposure-mediator interaction we could use the CDE
techniques

If there is no exposure-mediator interaction then NDE’s equal CDE’s

We could subtract our CDE bias formula ENAdGiRERSEE from the NDE
and its confidence interval

We could add this bias factor EadtiRErNM {0 the NIE and its C2I7




Sensitivity Analysis for Natural Direct
and Indirect Effects

2) Imai et al. (2010) give an approach for natural direct and indirect effects
that is fairly easy to implement using an R program,; it is possibly the most
useful approach in the presence of interaction but the interpretation of the
sensitivity analysis parameters is not as intuitive and is restricted to
unmeasured variables that affect only the mediator and the outcome

Suppose then for example, that the variables follow the regression models

Y =¢y+ 0, A+ 0,C+ ¢
M =8y + B1A+ B5C + €2
Y =0+ 60, A+ 0,M + 0;AM + 0,C + 5

but that the errors terms €5 and e3 are correlated. Imai et al. (2010a) show that if one specifies
the correlation between the errors terms in the second two regressions for M and Y as p then the
natural indirect effect for example 1s given by:

‘310'1 _~

NIE =
where 0y = Var(e|A = 1), 0y = Var(e|]A = 1), p = Cov(ey,e5/A = 1), and 3, can all be
estimated from the data. The parameter p could then be varied 1n a sensivity analysis to examine
how strongly the errors terms, €5 and €3, in the regressions for M and for Y, would have to be




Binary Outcome, Binary Mediator

3) We will consider one easier-to-use approach that can be applied when
both the mediator and the outcome are binary

Suppose we had a binary outcome and binary mediator:
logit[P(Y=1|A=a,M=m,C=c)] =6, +6,a + 8,m + B;am + 6, cC
logitfP(M=1|A=a,C=c)] =B, + Ba + B,C

If controlling for C alone sufficed to control for confounding i.e. suffice to
satisfy assumptions (1)-(4) then we would have (Valeri and VanderWeele,
2013):

exp{(61 + fzm)(a — a")}
exp(f,a){l + exp(#, + O30 + B, + B3,a" + 553¢)}
~ exp(8,0"){1 + exp(B; + 030" + B, + Bya" + Bro)}
{1 +exp(B, + B,a" + B3¢) H{1 + exp(b2 + bza + 8, + 5,0 + B5¢)}
~ {1 +exp(B, + Bya+ B4e) H{1 + exp(8; + Oza + B, + B,a" + Bhc)} 29




Binary Outcome, Binary Mediator

Suppose now that there were an unmeasured binary confounding variable U
for the mediator-outcome relationships where we specify (i) the risk ratio vy
relating U and Y for both strata of A and (ii) the prevalence of U in each
exposure-mediator stratum, P(U|A=a,M=m,c) so that:

P(Y =1lla,m,c,U =1)

P(Y =1la,m,c,U =0)

l+(y—1)P(U =1la,M =0,¢)
1+ (y—1)P(U =1la*, M =0,¢)
l+(y—1)P(U =1la,M =1,¢)
I+ (1 —1D)P{U=1a".M=1.0)
l+(y—1)P(U=1|a*M =1,c)
l+(y—=1)P(U=1la*, M =0,¢)

From (i) and (ii) we can calculate B,, B, and B,




Binary Outcome, Binary Mediator

If we let 61 — log(Bo)
8, — log(B,)

= B3 —log(B,) + log(By).

And we replace (8,,6,,05) by (61,,087,,0%,) in the original formulas:

ORZ25(m) = exp{(6:+0:m)(a—a")}
aa*ct exp(6,a*){1 + exp(8, + Oza* + 3, + 3,a* + 55¢)}

{1+ exp(B, + 810" + 53¢) {1 + exp(b2 + Oza + By + B,a + B4¢) }

OR.’\"IE (a) — / - —
{1+ exp(8, + B,a+ 85¢)}{1 + exp(8, + O30 + 8, + 8,a" + B5¢)}

This will give us the corrected natural direct and indirect had we been able

to adjust for U as well
31




Binary Outcome, Binary Mediator

We can assess the sensitivity of the conclusions to unmeasured
confounding by varying:
(i) y, the risk ratio relating U and Y and
(ii) the prevalence of U in each treatment-mediator stratum to get:
P(Y =1lla,m,c,U =1)
P(Y =1la,m,c,U =0)
14+ (y—=1)P(U = 1la, M = 0,¢)
1+ (y—=1)P(U =1la*, M =0,¢)
1+ (y—=1)P(U =1la,M =1,¢)
1+ (y=1)P(U =1la*, M =1,¢)
l+(y—1)P(U=1|a*M =1,c)
1+ (y=1)P(U =1la*, M =0,¢)

And then (67,,87,,61,) and the corrected effect estimates

Standard errors can be calculated using the delta method and the relations
between the estimated and adjusted coefficients =




Mediator-Outcome Confounder
Affected by Exposure

To estimate natural direct and indirect effects we need assumption 4 that
there is no effect of exposure that confounds the mediator-outcome
relationship; this would be violated in the following causal diagram:

Y

PN

One possibility may be to attempt to use sensitivity analysis techniques
which would allow for inferring a range of possible values for the natural
indirect effect under reasonable assumptions




Mediator-Outcome Confounder
Affected by Exposure

Current work consider sensitivity analysis when data is available on

the exposure-induced mediator-outcome confounder L (e.g.
Vansteelandt and VanderWeele, 2012; Imai and Yamamoto, 2013)

Other work considers sensitivity analysis when data is not available
available on the exposure-induced mediator-outcome confounder L
(Tchetgen Tchetgen and Shpitser, 2012; VanderWeele and Chiba
2013)

Generally the latter are easier to implement in practice but the former
are probably more reliable

If there is no “three-way interaction” (in different technical senses cf.
Vansteelandt and VanderWeele, 2012; Imai and Yamamoto, 2013),
then the effects are identified with data on L




Approaches to Sensitivity Analysis

Sensitivity analysis does not give one right answer but a range
It is sometimes objected that there is too much subjectivity in using
sensitivity analysis

Possible Approaches:

(1) Create a table with many values of all sensitivity analysis
parameters; include those one thinks are too extreme;
let the reader decide

(2) Find the most important measured confounder variable; examine
if an unmeasured confounder of similar strength would
change conclusions

(3) Report how large the effects of the confounder would have to be
to completely explain away the effect

(4) Use external data or expert opinion to inform sensitivity analysig
parameters




Measurement Error

Suppose M is measured with non-differential error: M* =M + ¢
We fit the models:

logit[Y=1|A=a,M*=m*,C=c] = 6, + 6,a + B,m"* + B;am™ + Q,'c
E[M*|A=a,C=c] =B, + B4a + B,'C

The model for M* will give unbiased estimates for the model for coefficients
for the model for M

The coefficients in the model for Y will biased when we use M* instead of
M; we can obtain corrected estimates for the model for Y using methods of
moments, regression calibration, or SIMEX (Valeri, Lin and VanderWeele,
2012) and corrected NIE and NDE estimates and s.e.’s once we specify:

A = Var(M|A,C) / Var(M*|A,C)

which we could vary in a sensitivity analysis




Measurement Error

An especially easy case follows when there is no exposure mediator
Interaction:

logit[Y=1|A=a,M*=m*,C=c] =6, + 6,a + B,m* + 6,'Cc
E[M*|A=a,C=c] =B, + B4a + B,'C

If we specify the proportion of the variance in M* explained by M:
A = Var(M|A,C) / Var(M*|A,C)

we have that the true coefficients expressed in terms of the mismeasured
(denote with the tilda “~") are (Carroll et al., 2006; le Cessie et al., 2012):

B B 1
B, — fa(— —1)5.
ol '




Measurement Error

31 —Z::% — 1'53-‘

We can then use our specification of A and our estimates of the coefficient
from the mismeasured mediator to get corrected coefficients and use those
for our estimate of direct and indirect effects (le Cessie et al., 2012;
VanderWeele et al., 2012)

We could vary A in a sensitivity analysis

This approach also works with a continuous outcome

Standard errors can be estimated by bootstrapping




Measurement Error

Methods have also been developed for other more complex forms of
measurement error including:

(1) Cases with exposure-mediator interaction (Valeri, Lin, and
VanderWeele, 2012)

(2) Binary mediators (Valeri and VanderWeele, 2012)

(3) Differential measurement error with the exposure or
outcome affecting the mediator measurement, differential
or non-differential intra individual variation over time, and
various trigger mechanisms (le Cessie et al., 2012)

Some of these techniques are more difficult to implement or
require more specialized software >




Measurement Error

Intuitively we would expect the NIE to be biased towards the null and the
NDE to be biased away from the null

When will this hold?

Assume NIE and NDE are in the same directions
Assume we have non-differential measurement error for M

We will have the intuitive conclusion (NIE toward null, NDE away) if:

(1) M is binary (Ogburn and VanderWeele, 2012)

(2) M is normally distributed and continuous but there is no interaction
between M and A in either a linear or logistic model (VanderWeele et
al., 2012)

Otherwise (e.g. if M has three or more levels; or M normal but there is AxM
interaction) these intuitive results may not hold
However, we can still use sensitivity analysis (Valeri et al., 2012)

40




Mediation Analysis for Genetic
Variants on 15925.1

If we apply the methods to the genetics data, tests for interaction b/w
genetic variants and smoking is significant for rs8034191 (P=0.001)

Suppose we fit our models (ignoring unmeasured confounding and
measurement error)

Allowing for gene x smoking interaction gives the following:

An increase of one rs8034191 C allele gives:
NDE OR =1.32 (95% CI: 1.17,1.49) P=9x10-°

NIE OR =1.01 (95% CI: 0.99,1.03) P=0.16
with proportion mediated 5.4%

It looks like most of the effect is through other pathways (i.e. not
through cigarettes per day)




Mediation Analysis for Genetic
Variants on 15925.1

We would expect unmeasured confounding here to be ‘positive’ (e.g.
neighborhood would likely affect smoking and lung cancer in the

same direction)

If so, NDE is biased downwards; NIE biased downwards

This would strengthen the conclusion that most is direct (through
other pathways)
Our naive NIE (already small) is an overestimate

What about measurement error?
Measurement error in cigarettes per day we might expect to bias the
NIE downwards; the true NIE may be larger

This would threaten our conclusion




Mediation Analysis for Genetic
Variants on 15925.1

We adjust the coefficients estimated in the outcome regression:
logit[Y=1|A=a,M*=m*,C=c] = 6, + 6,a + B,m"* + B;am™ + Q,'c

for possible measurement error using regression calibration. The
adjusted estimates can then be used to re-estimate direct and indirect
effects.

Allowing up to 50% error gives (one allele rs8034191 C increase)
NDE OR = 1.27 NIE OR =1.02 PM = 8.8%

Allowing up to 75% error gives (one allele rs8034191 C increase)
NDE OR = 1.33 NIE OR = 1.04 PM = 15.2%

Methods of moments, regression calibration, and SIMEX gave very
similar results for measurement error correction




Mediation Analysis for Genetic
Variants on 15925.1

There may be an indirect effect but it is quite small, even allowing substantial
/5% measurement error (1.04 95% CI: 0.99,1.11)

Most of the effect seems through pathways other than cigarettes per day

Results were further replicated in 3 other lung cancer case-control studies
(MD Andersen, IARC, Toronto) and gave similar conclusions

Results are quite robust to unmeasured confounding and measurement error
The effect of the variants on lung cancer is NOT through cigarettes per day

BUT... there is substantial interaction (likely no effect of the variants except in
the presence of smoking; Li et al., 2010)

The variant may make each cigarette more harmful (more nicotine and toxins
per cigarette smoked; Le Marchand et al., 2008) but do not operate on lung
cancer principally by increasing cigarettes per day

May operate by deeper inhalation when smoking (current study at Bristol)




How bad can it can get?

We have seen several sensitivity analysis techniques for
unmeasured confounding and measurement error

However in our example from genetic epidemiology, our results
seemed fairly robust to unmeasured confounding and to
measurement error

We might wonder whether this will generally be the case

How important is sensitivity analysis?

How biased can our results really be?




Mediator-Outcome Confounding

A number of studies (e.g. Yerushalmy, 1971; Wilcox, 1993; Hernandez-Diaz
et al., 2006) have examined the effect of smoking A on infant mortality Y
within strata of birthweight M

Conceived of in another way, this is the direct effect of smoking on infant
mortality controlling for the intermediate birthweight

Studies have found that amongst those with the lowest birth weight, smoking
appears to have a beneficial effect!!! e.g. in the US, the odds of infant

mortality amongst infants <2000g is 0.79 lower for smoking mothers than
non-smoking mothers!




Mediator-Outcome Confounding

A=maternal smoking
M=birth weight
Y=infant mortality
U=Dbirth defect

These studies have not controlled for birth defects U which confounds
the mediator-outcome relationship (Hernandez-Diaz et al, 2006)

Essentially low birth weight might be due to smoking or due to birth
defects; if we look at infants who have very low birth weight whose
mothers do not smoke then the low birth weight is likely due to some
other cause (e.g. a birth defect) that is much worse than smoking

If we were able to control for birth defects also (e.g. compare smoking
and non-smoking mothers within strata of the presence of birth defecj,
we likely would not observe these paradoxical findings)




Birthweight Paradox

The approach can be used to resolve the birthweight paradox:
The odds of infant mortality amongst infants <2000g is 0.79 lower for
smoking mothers than non-smoking mothers

If U denotes a common cause of low birthweight and infant mortality
(e.g. birth defect / malnutrition) then...

If the effect of U increases the risk of infant mortality 3.5 fold and

If the prevalence of U for low-birth weight infants whose mothers
smoke is 0.025 but the prevalence of U for low-birth weight infants
whose mothers do not smoke is 0.14 (smoking is ruled out as an
explanation of LBW rendering other causes more likely) then

Bias(CDE) = {1+(3.5 - 1)x0.025} / {1 + (3.5 - 1)x(0.14)} = 0.79

And our corrected estimate would be 0.79/Bias(CDE) = 0.79/0.79=1
and such confounding would completely explain away the
birthweight paradox
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CBT Intervention

SMaRT trial (Strong et al., 2008): a randomized cognitive behavioral
therapy intervention

Effect on depression symptoms after 3 months (SCL-20 depression)
At 3 months was E[Y|A=1]-E[Y|A=0]=-0.34 (95% CI: -0.55, -0.13)
Intervention also had an effect on the use of antidepressant

Those in the CBT arm were more likely to use antidepressants

Does the CBT intervention affect depressive symptoms simply
because of higher antidepressant use, or other pathways?

What happens when we regress outcome Y on treatment and
mediator (anti-depressant use)...?




CBT Intervention

The coefficient for antidepressant use is positive!

It looks like antidepressant use increases depression!

The mediated effect through antidepressant use looks detrimental!
The “direct effect” looks larger than the total effect!

What is going on here...? Mediator-Outcome Confounding

Those in more difficult situations both use an antidepressant and
have higher levels of depressive symptoms

When we ignore this confounding we get paradoxical results!

Using a new sensitivity analysis techniques (Emsley and
VanderWeele, 2013), data from several trials which randomize
antidepressant use are used to inform sensitivity analysis
parameters:

Direct effect ranges from: -.151t0 -.28
Mediated effect (through antidepressent): -.06 to -.19




Conclusions

(1) New methodology for mediation analysis can help answer questions of
pathways, but may be biased by confounding and measurement error

(2) Sensitivity analysis methods for confounding and measurement error
can help assess the extent to which these biases may invalidate results

(3) A number of methods are now available but considerable work remains
to be done in this area

(4) The application of these methods suggests most of the effect of the
variants on 15925 on lung cancer is not through increasing cigarettes
per day; similar approaches could be used with other SNPs, exposures
and outcomes

(5) Unmeasured confounding can lead to very biased estimates and
paradoxical results and needs to be taken serious; sensitivity analysis
can assist with this
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